Skip to main content
Log in

Use of Soft Lithography for Multi-layer MicroMolding (MMM) of 3-D PCL Scaffolds for Tissue Engineering

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Tissue engineering scaffolds with precisely controlled geometries, particularly with surface features smaller than typical cell dimensions (1-10μm), can improve cellular adhesion and functionality. In this paper, soft lithography was used to fabricate polydimethylsiloxane (PDMS) stamps of arrays of parallel 5μm wide, 5μm deep grooves separated by 45 μm ridges, and an orthogonal grid of lines with the same geometry. Several methods were compared for the fabrication of 3-D multi-layer polycaprolactone (PCL) scaffolds with precise features. First, micromolding in capillaries (MIMIC) was used to deliver the polymer into the small grooves by capillarity; however the resultant lines were discontinuous and not able to form complete lines. Second, spin coating and oxygen plasma were combined to build 3-D scaffolds with the line pattern. The resultant scaffolds had good alignment and adhesion between layers; however, the upper layer collapsed due to the poor mechanical rigidity. Finally, a new multi-layer micromolding (MMM) method was developed and successfully applied with the grid pattern to fabricate 3-D scaffolds. Scanning electron microscopy (SEM) characterization showed that the multi-layered scaffolds had high porosity and precisely controlled 3-D structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Curtis, M. Riehle. Phys. Med. Biol. 46, R47 (2001).

    Article  CAS  Google Scholar 

  2. A. Vats, N.S. Tolley, J.M. Polak, J.E. Clin. Otolaryngol. 28(3), 165 (2003).

    CAS  Google Scholar 

  3. D.W. Hutmacher. Biomaterials 21, 2529 (2000).

    Article  CAS  Google Scholar 

  4. A. Curtis, C. Wilkinson. Biomaterials 18(24), 1573 (1997).

    Article  CAS  Google Scholar 

  5. L.E. Freed, J.C. Marquis, G. Vunjak-Novakovic, J. Emmanual, R. Langer. Biotechnol. Bioeng. 43, 605 (1994).

    Article  CAS  Google Scholar 

  6. T. Ma, Y. Li, S.T. Yang. Biotechnol. Prog. 15, 715 (1999).

    Article  CAS  Google Scholar 

  7. X.F. Walboomers, J.A. Jansen. Ondotology 89, 2 (2001).

    CAS  Google Scholar 

  8. R.G. Flemming, C.J. Murphy, G.A. Abrams, S.L. Goodman, P.F. Nealey. Biomaterials 20, 573 (1999).

    Article  CAS  Google Scholar 

  9. Y. Ito. Biomaterials 20, 2333 (1999).

    Article  CAS  Google Scholar 

  10. A.S.G. Curtis, M. Varde. J. Nat. Cancer. Res. Inst. 33, 15 (1964).

    CAS  Google Scholar 

  11. S.N. Bhatia, C.S. Chen. Biomed. Microdevices 2(2), 131 (1999).

    Article  Google Scholar 

  12. A.F. von Recum, T.G. van Kooten. J. Biomater. Sci. Polym. Ed. 7, 181 (1995).

    Article  Google Scholar 

  13. D.M. Brunette, G.S. Kenner, T.R.L. Gould. J. Dent. Res. 62, 1045 (1983).

    Article  CAS  Google Scholar 

  14. P. Clark. Biosens. Bioelec. 9, 657 (1994).

    Article  CAS  Google Scholar 

  15. M.J. Dalby, M.O. Riehle, S.J. Yarwood, C.D.W. Wilkinson, A.S.G. Curtis. Experimental Cell Research 284, 274 (2003).

    Article  CAS  Google Scholar 

  16. A. Folch, S. Mezzour, M. During, O. Hurtado, M. Toner, R. Muller. Biomed. Microdevices 2, 207 (2000).

    Article  Google Scholar 

  17. T.A. Desai. Medical Engineering & Physics 22, 595 (2000).

    Article  CAS  Google Scholar 

  18. G. Vozzi, C. Flaim, A. Ahluwalia, S. Bhatia. Biomaterials 24, 2533 (2003).

    Article  CAS  Google Scholar 

  19. J.H. Ward, R. Bashir, N.A. Peppas. J. Biomed. Mater. Res. 56, 351 (2001).

    Article  CAS  Google Scholar 

  20. V.A. Liu, S.N. Bhatia. Biomed. Microdevices. 4, 257 (2002).

    Article  CAS  Google Scholar 

  21. Y. Yan, Z. Xiong, Y. Hu, S. Wang, R. Zhang, C. Zhang. Materials Letters 57, 2623 (2003).

    Article  CAS  Google Scholar 

  22. A. Janshoff, S. Künneke. European Biophysics Journal 29, 549 (2000).

    Article  CAS  Google Scholar 

  23. S.H. Li, J.R. De Wijn, P. Layrolle, K. de Groot. J. Biomed. Mater. Res. 61, 109 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Ferrell, N. & Hansford, D.J. Use of Soft Lithography for Multi-layer MicroMolding (MMM) of 3-D PCL Scaffolds for Tissue Engineering. MRS Online Proceedings Library 823, W9.3/O5.3 (2004). https://doi.org/10.1557/PROC-823-W9.3/O5.3

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-823-W9.3/O5.3

Navigation