Skip to main content
Log in

Oligonucleotide Metallization for Conductive Bio-Inorganic Interfaces in Self Assembled Nanoelectronics and Nanosystems

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Properly designed sequences of oligonucleotides can be employed as scaffolds or templates for the self-organization of nanostructures and devices, through the Watson-Crick base pairing mechanism which serves as a programmable smart glue. In this paper, we report the Platinum metallization of peptide nucleic acid (PNA) sequences for the first time. PNA is an analogue of DNA and has a neutral backbone which provides stronger hybridization, greater stability and higher specificity in base pairing. Pt ions were reduced from a salt solution and localized over the PNA fragments where the size of the Pt colloids depends on the duration of chemical reduction. Computations of the high lying occupied and lowlying unoccupied orbitals indicated that Pt nanoparticles bind easily on both the Thymine (T) bases and the backbone in the PNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niemeyer, C. M. et al. Angew. Chem. Int. Ed, 40, 4128–4158 (2001).

    Article  CAS  Google Scholar 

  2. Egholm, M., Buchardt, O. et al. Nature, 365, 566–568 (1993).

  3. Egholm, M., Nielsen, P. E., Buchardt, O., and Berg, R. H. J. Am.Chem. Soc., 114, 9677–9678(1992).

  4. M. R. Arkin, Science 273, 475(1996).

    Article  CAS  Google Scholar 

  5. Y. Okahata, T. Kobayashi, K. Tanaka, and M. Shimomura, J. Am. Chem.Soc., 120, (6165 ~1998).

  6. J. Jortner, M. Bixon, T. Langenbacher, and M. E. Michel-Beyerle, Proc.Natl. Acad. Sci. U.S.A. 95, 12759 (1998).

    Article  CAS  Google Scholar 

  7. E. Meggers, M. E. Michel-Beyerle, and B. Giese, J. Am. Chem. Soc. 120, 12950 (1998).

    Article  CAS  Google Scholar 

  8. P. J. de Pablo. et al, Phys. Rev. Lett., 85, 4992 (2000).

    Article  Google Scholar 

  9. P. T. Henderson, D. Jones, G. Hampikian, Y. Kann, and B. G. Shuster, Proc. Natl. Acad. Sci. U.S.A. 96, 8353 (1999).

    Article  CAS  Google Scholar 

  10. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature, 403, 635 (2000).

    Article  CAS  Google Scholar 

  11. Erez Braun, Yoav Eichen, Uri Sivan, Gdalyahu Ben-Yoseph, Nature, 391, 775–778 (1998).

  12. Jan Richter, Michael Mertig, and Wolfgang Pompe. Applied Physics Letters, 78, 536–538 (2001).

  13. Becke, A. D., J. Chem. Phys., 98, 5648 (1993).

    Article  CAS  Google Scholar 

  14. Hay, P.J. and Wadt, W.R., J.Chem. Phys., 82, 270(1985).

    Article  CAS  Google Scholar 

  15. Wadt, W. R. and Hay, P. J., J. Chem. Phys., 82, 284 (1985).

    Article  CAS  Google Scholar 

  16. Hay, P.J. and Wadt, W.R., J.Chem. Phys., 82, 299(1985).

    Article  CAS  Google Scholar 

  17. M.J. Frisch et al., Gaussian 03, Revision B.03 (Gaussian Inc., Pittsburgh, 2003).

  18. Keren, K., Berman, R. S., and Braun, E., Nano Lett., 4, 323 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Singh, K., Tsai, C. et al. Oligonucleotide Metallization for Conductive Bio-Inorganic Interfaces in Self Assembled Nanoelectronics and Nanosystems. MRS Online Proceedings Library 872, 102 (2005). https://doi.org/10.1557/PROC-872-J10.2

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-872-J10.2

Navigation