Skip to main content
Log in

The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Boron carbide diode detectors, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theoretical expectations. The performance of the all boron carbide neutron detector differs, as expected, from devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector).

Diodes were fabricated from natural abundance boron (20% 10B and 80% 11B.) directly on the metal substrates and metal contacts applied to the films as grown. The total boron depth was on the order of 2 microns. This is clearly not a conversion-layer configuration. The diodes were exposed to thermal neutrons generated from a paraffin moderated plutonium-beryllium source in moderated and unmoderated, as well as shielded and unshielded experimental configurations, where the expected energy peaks at at 2.31 MeV and 2.8 MeV were clearly observed, albeit with some incomplete charge collection typical of thinner diode structures. The results are compared with other boron based thin film detectors and literature models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.W. Robertson, S. Adenwalla, A. Harken, P. Welsch, J.I. Brand, P.A. Dowben, and J.P. Claassen, Applied Physics Letters 80, 3644–3646 (2002)

    Article  CAS  Google Scholar 

  2. B.W. Robertson, S. Adenwalla, A. Harken, P. Welsch, J.I. Brand, J.P. Claassen, N.M. Boag, and P.A. Dowben, Advances in Neutron Scattering Instrumentation, I.S. Anderson, B. Guérard, Eds. Proc. SPIE Vol. 4785, 226–233 (2002)

  3. S. Adenwalla, R. Billa, J.I. Brand, E. Day, M.J. Diaz, A. Harken, A. McMullen-Gunn, R. Padmanabhan and B.W. Robertson, Penetrating Radiation Systems and Applications V, Proc. SPIE 5199, 70–74 (2003)

  4. A.N. Caruso, R.B. Billa, S. Balaz, J.I. Brand and P.A. Dowben, J. Physics Condensed Matter 16, L139–L146 (2004)

    Article  CAS  Google Scholar 

  5. A.D. Harken, E.E. Day, B.W. Robertson, S. Adenwalla, Jap. J. Appl. Phys. 44, 444–445 (2005)

    Article  CAS  Google Scholar 

  6. E. Day, M.J. Diaz, S. Adenwalla, “Effect of bias on neutron detection in thin semiconducting boron carbide films”, Applied Physics Letters, submitted

  7. D. Emin and T.L. Aselage, J. Appl. Phys. 97, 013529 (2005)

  8. D.N. McIlroy, J. Physics-Condensed Matter 16, V13–V14 (2004)

    Article  Google Scholar 

  9. Z.W. Bell, D.A. Carpenter, S.S. Cristy, V.E. Lamberti, A. Burger, B.F. Woodfield, T. Niedermayr, I.D. Hau, S.E. Labov, S. Friedrich, W.G. West, K.R. Pohl, L. van der Berg, Phys. Stat. Solidi c2, 11592–1605 (2005)

  10. A. Owens, A. Peacock, Nucl. Intrumen. Methods Phys. Res. A 531, 18–37 (2004)

  11. P.M. Martin, Vacuum Coating and Technology, 6–11 (2004)

  12. D.S. McGregor, J.K. Shultis, Nucl. Instrum. Methods Phys. Res. A 517, 180 (2004)

    Article  CAS  Google Scholar 

  13. D.S. McGregor, J.K. Shultis, Nucl. Instrum. Methods Phys. Res. A 536, 232 (2005)

    Article  CAS  Google Scholar 

  14. N. Sato, O. Ishiwata, Y. Seki, and A. Ueda, Jpn. J. Appl. Phys. 29, 2526 (1990).

    Article  CAS  Google Scholar 

  15. D.S. McGregor, S.M. Vernon, H.K. Gersch, S.M. Markham, S.J. Wojtczuk, and D.K. Wehe, IEEE Trans. Nucl. Sci. 47, 1364 (2000).

    Article  CAS  Google Scholar 

  16. C.A. Baker, K. Green, M.G.D. van der Grinten, P.S. Iaydjiev, S.N. Ivanov, S. Al-Ayoubi, P.G Harris, J.M. Pendlebury, D.B. Shiers, and P. Geltenbort, Nucl. Instrum. Methods A 487, 511 (2002).

    Article  CAS  Google Scholar 

  17. A. Rose, Nucl. Instrum. Methods 52, 166 (1967)

    Article  CAS  Google Scholar 

  18. A.D. Harken, C.N. Lundstedt, E.E. Day and B.W. Robertson, “Neutron Detection Efficiency and Capture Product Energy Spectra of All-Semiconducting-Boron Carbide and Conversion-Layer Detectors”, IEEE Transactions on Nuclear Science, Volume 7, 16–22 Oct. 2004 Page(s): 4585 – 4589

  19. C. Lundstedt, A. Harken, E. Day, B.W. Robertson, and S. Adenwalla, “Modeling Solid-State Boron Carbide Low Energy Neutron Detectors”, Nucl. Instrum. and Methods in Phys. Res. A 562 (2006) 380

  20. S.-D. Hwang, D. Byun, N.J. Ianno, P.A. Dowben, H.R. Kim, Appl. Phys. Lett. 68, 1495–1497 (1996)

    Article  Google Scholar 

  21. S. Adenwalla, P. Welsch, A. Harken, J.I. Brand, A. Sezer, B.W. Robertson, Appl. Phys. Lett. 79, 4357–4359 (2001)

    Article  CAS  Google Scholar 

  22. S.-D. Hwang, K. Yang, P.A. Dowben, A.A. Ahmad, N.J. Ianno, J.Z. Li, J.Y. Lin, H.X. Jiang, D.N. McIlroy, Appl. Phys. Lett. 70, 1028–1030 (1997)

    Article  CAS  Google Scholar 

  23. A.N. Caruso, P.A. Dowben, S. Balkir, N. Schemm, K. Osberg, R.W. Fairchild, O.B. Flores, S. Balaz, A.D. Harken, B.W. Robertson, J.I. Brand, Material Science and Engineering B 135 (2006) 129–133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabirianov, I.F., Fairchild, R.W. & Brand, J.I. The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach. MRS Online Proceedings Library 981, 606 (2006). https://doi.org/10.1557/PROC-981-0981-JJ06-06

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-981-0981-JJ06-06

Keywords

Navigation