Skip to main content
Log in

Vanadium oxide nanowires for Li-ion batteries

  • Reviews
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Vanadium oxide nanowires have gained increasing interest as the electrode materials for Li-ion batteries. This article presents the recent developments of vanadium oxide nanowire materials and devices in Li-ion batteries. First, we will describe synthesis and construction of vanadium oxide nanowires. Then, we mainly focus on the electrochemical performances of vanadium oxide nanowires, such as VO2, V2O5, hydrated vanadium oxides, LiV3O8, silver vanadium oxides, etc. Moreover, design and in situ characterization of the single nanowire electrochemical device are also discussed. The challenges and opportunities of vanadium oxide nanowire electrode materials will be discussed as a conclusion to push the fundamental and practical limitations of this kind of nanowire materials for Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. J.B. Goodenough: Cathode materials: A personal perspective. J. Power Sources 174, 996 (2007).

    Article  CAS  Google Scholar 

  2. M. Ma, N.A. Chernova, B.H. Toby, P.Y. Zavalij, and M.S. Whittingham: Structural and electrochemical behavior of LiMn0.4Ni0.4Co0.2O2. J. Power Sources 165, 517 (2007).

    Article  CAS  Google Scholar 

  3. X. Ji, K.T. Lee, and L.F. Nazar: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500 (2009).

    Article  CAS  Google Scholar 

  4. R. Enjalbert and J. Galy: A refinement of the structure of V2O5. Acta Crystallogr. C 42, 1469 (1986).

    Article  Google Scholar 

  5. M.S. Whittingham: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).

    Article  CAS  Google Scholar 

  6. M. Ganesan: Studies on the effect of titanium addition on LiCoO2. Ionics 15, 609 (2009).

    Article  CAS  Google Scholar 

  7. P. Yang and C.M. Lieber: Nanorod-superconductor composites: A pathway to high critical current density materials. Science 273, 1836 (1996).

    Article  CAS  Google Scholar 

  8. D.K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H.L. Peng, R.A. Huggins, and Y. Cui: Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948 (2008).

    Article  CAS  Google Scholar 

  9. H.W. Lee, P. Muralidharan, R. Ruffo, C.M. Mari, Y. Cui, and D.K. Kim: Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 10, 3852 (2010).

    Article  CAS  Google Scholar 

  10. E. Hosono, H. Matsuda, T. Saito, T. Kudo, M. Ichihara, I. Honma, and H.S. Zhou: Synthesis of single crystalline Li0.44MnO2 nanowires with large specific capacity and good high current density property for a positive electrode of Li ion battery. J. Power Sources 195, 7098 (2010).

    Article  CAS  Google Scholar 

  11. M.S. Whittingham: The role of ternary phases in cathode reactions. J. Electrochem. Soc. 123, 315 (1976).

    Article  CAS  Google Scholar 

  12. N.A. Chernova, M. Roppolo, A.C. Dillonb, and M.S. Whittingham: Layered vanadium and molybdenum oxides: Batteries and electrochromics. J. Mater. Chem. 10, 2526 (2009).

    Article  CAS  Google Scholar 

  13. Y. Wang and G.Z. Cao: Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater. 18, 2787 (2006).

    Article  CAS  Google Scholar 

  14. C.Z. Wu and Y. Xie: Promising vanadium oxide and hydroxide nanostructures: From energy storage to energy saving. Energy Environ. Sci. 3, 1191 (2010).

    Article  CAS  Google Scholar 

  15. T.Y. Zhai, H.M. Liu, H.Q. Li, X.S. Fang, M.Y. Liao, L. Li, H.S. Zhou, Y. Koide, Y. Bando, and D. Golberg: Centimeter-long V2O5 nanowires: From synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 22, 2547 (2010).

    Article  CAS  Google Scholar 

  16. M.H. Kim, B. Lee, S. Lee, C. Larson, J.M. Baik, C.T. Yavuz, S. Seifert, S. Vajda, R.E. Winans, M. Moskovits, G.D. Stucky, and A.M. Wodtke: Growth of metal oxide nanowires from supercooled liquid nanodroplets. Nano Lett. 9, 4138 (2009).

    Article  CAS  Google Scholar 

  17. K. Takahashi, S.J. Limmer, Y. Wang, and G.Z. Cao: Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electrodeposition. J. Phys. Chem. B 108, 9795 (2004).

    Article  CAS  Google Scholar 

  18. Y. Cheng, T.L. Wong, K.M. Ho, and N. Wang: The structure and growth mechanism of VO2 nanowires. J. Cryst. Growth 311, 1571 (2009).

    Article  CAS  Google Scholar 

  19. J.M. Velazquez and S. Banerjee: Catalytic growth of single-crystalline V2O5 nanowire arrays. Small 5, 1025 (2009).

    Article  CAS  Google Scholar 

  20. M.C. Wu and C.S. Lee: Field emission of vertically aligned V2O5 nanowires on an ITO surface prepared with gaseous transport. J. Solid State Electrochem. 182, 2285 (2009).

    Article  CAS  Google Scholar 

  21. A.Q. Pan, J.G. Zhang, Z.M. Nie, G.Z. Cao, B.W. Arey, G.S. Li, S.Q. Liang, and J. Liu: Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J. Mater. Chem. 20, 9193 (2010).

    Article  CAS  Google Scholar 

  22. A.M. Glushenkov, V.I. Stukachev, M.F. Hassan, G.G. Kuvshinov, H.K. Liu, and Y. Chen: A novel approach for real mass transformation from V2O5 particles to nanorods. Cryst. Growth Des. 8, 3661 (2008).

    Article  CAS  Google Scholar 

  23. Y. Wang, H.J. Zhang, W.X. Lim, J.Y. Lin, and C.C. Wong: Designed strategy to fabricate a patterned V2O5 nanobelt array as a superior electrode for Li-ion batteries. J. Mater. Chem. 21, 2362 (2011).

    Article  CAS  Google Scholar 

  24. C. Ban and M.S. Whittingham: Nanoscale single-crystal vanadium oxides with layered structure by electrospinning and hydrothermal methods. Solid State Ionics 179, 1721 (2008).

    Article  CAS  Google Scholar 

  25. C. Ban, N.A. Chernova, and M.S. Whittingham: Electrospun nano-vanadium pentoxide cathode. Electrochem. Commun. 11, 522 (2009).

    Article  CAS  Google Scholar 

  26. P. Viswanathamurthi, N. Bhattarai, H.K. Kim, and D.R. Lee: Vanadium pentoxide nanofibers by electrospinning. Scr. Mater. 49, 577 (2003).

    Article  CAS  Google Scholar 

  27. D.M. Yu, C.G. Chen, S.H. Xie, Y.Y. Liu, K. Park, X.Y. Zhou, Q.F. Zhang, J.Y. Li, and G.Z. Cao: Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by electrospinning. Energy Environ. Sci. 4, 858 (2011).

    Article  CAS  Google Scholar 

  28. L.Q. Mai, L. Xu, C.H. Han, X. Xu, Y.Z. Luo, S.Y. Zhao, and Y.L. Zhao: Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for Lithium ion batteries. Nano Lett. 10, 4750 (2010).

    Article  CAS  Google Scholar 

  29. D. Whang, S. Jin, Y. Wu, and C.M. Lieber: Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255 (2003).

    Article  CAS  Google Scholar 

  30. D. Whang, S. Jin, and C.M. Lieber: Nanolithography using hierarchically assembled nanowire masks. Nano Lett. 3, 951 (2003).

    Article  CAS  Google Scholar 

  31. L.Q. Mai, Y.H. Gu, C.H. Han, B. Hu, W. Chen, P.C. Zhang, L. Xu, W.L. Guo, and Y. Dai: Orientated Langmuir-Blodgett assembly of VO2 nanowires. Nano. Lett. 9, 826 (2009).

    Article  CAS  Google Scholar 

  32. L.Q. Mai, W. Chen, Q. Xu, J.F. Peng, and Q.Y. Zhu: Low-cost synthesis of novel vanadium dioxide nanorods. Int. J. Nanosci. 3, 225 (2004).

    Article  CAS  Google Scholar 

  33. M.D. Wei, H. Sugihara, I. Honma, M. Ichihara, and H.S. Zhou: A new metastable phase of crystallized V2O4·0.25 H2O nanowires: Synthesis and electrochemical measurements. Adv. Mater. 17, 2964 (2005).

    Article  CAS  Google Scholar 

  34. J. Galy: Vanadium pentoxide and vanadium oxide bronzes—Structural chemistry of single (S) and double (D) layer MxV2O5 phases. J. Solid State Chem. 100, 229 (1992).

    Article  CAS  Google Scholar 

  35. Z.J. Chen, S.K. Gao, L.L. Jiang, M.D. Wei, and K.M. Wei: Crystalline VO2 (B) nanorods with a rectangular cross-section. Mater. Chem. Phys. 121, 254 (2010).

    Article  CAS  Google Scholar 

  36. F. Zhou, X.M. Zhao, H. Xu, and C.G. Yuan: Hydrothermal synthesis of metastable VO2 nanorods as cathode materials for lithium ion batteries. Chem. Lett. 11, 1280 (2006).

    Article  Google Scholar 

  37. G. Armstrong, J. Canales, A.R. Armstrong, and P.G. Bruce: The synthesis and lithium intercalation electrochemistry of VO2 (B) ultra-thin nanowires. J. Power Sources 178, 723 (2008).

    Article  CAS  Google Scholar 

  38. W. Chen, L.Q. Mai, Y.Y. Qi, and Y. Dai: One-dimensional nanomaterials of vanadium and molybdenum oxides. J. Phys. Chem. Solids. 67, 896 (2006).

    Article  CAS  Google Scholar 

  39. W. Chen, Q. Xu, Y. Hu, L. Mai, and Q. Zhu: Effect of modification by poly (ethylene oxide)on the reversibility of insertion/extraction of Li+ ion in V2O5 xerogel films. J. Mater. Chem. 12, 1926 (2002).

    Article  CAS  Google Scholar 

  40. S.L. Chou, J.Z. Wang, J.Z. Sun, D. Wexler, M. Forsyth, H.K. Liu, D.R. MacFarlane, and S.X. Dou: High capacity, safety, and enhanced cyclability of lithium metal battery using a V2O5 nanomaterial cathode and room temperature ionic liquid electrolyte. Chem. Mater. 20, 7044 (2008).

    Article  CAS  Google Scholar 

  41. C.K. Chan, H. Peng, R.D. Twesten, K. Jarausch, X.F. Zhang, and Y. Cui: Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 7, 490 (2007).

    Article  CAS  Google Scholar 

  42. H. Qiao, X. Zhu, Z. Zheng, L. Liu, and L. Zhang: Synthesis of V3O7·H2O nanobelts as cathode materials for lithium–ion batteries. Electrochem. Commun. 8, 21 (2006).

    Article  CAS  Google Scholar 

  43. S.K. Gao, Z.J. Chen, M.D. Wei, K.M. Wei, and H.S. Zhou: Single crystal nanobelts of V3O7·H2O: A lithium intercalation host with a large capacity. Electrochim. Acta 54, 1115 (2009).

    Article  CAS  Google Scholar 

  44. Y.F. Zhang, X.H. Liu, G.Y. Xie, L. Yu, S.P. Yi, M.J. Hu, and C. Huang: Hydrothermal synthesis, characterization, formation mechanism and electrochemical property of V3O7·H2O single-crystal nanobelts. Mater. Sci. Eng., B 175, 164 (2010).

    Article  CAS  Google Scholar 

  45. B.X. Li, Y. Xu, G.X. Rong, M. Jing, and Y. Xie: Vanadium pentoxide nanobelts and nanorolls: From controllable synthesis to investigation of their electrochemical properties and photocatalytic activities. Nanotechnology 17, 2560 (2006).

    Article  CAS  Google Scholar 

  46. V. Petkov, P.N. Trikalitis, E.S. Bozin, S.J.L Billinge, T. Vogt, and M.G. Kanatzidis: Structure of V2O5.nH2O xerogel solved by the atomic pair distribution function technique. J. Am. Chem. Soc. 124, 10157 (2002).

    Article  CAS  Google Scholar 

  47. H.M. Liu, Y.G. Wang, K.X. Wang, Y.R. Wang, and H.S. Zhou: Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. J. Power Sources 192, 668 (2009).

    Article  CAS  Google Scholar 

  48. A. Sakunthala, M.V. Reddy, S. Selvasekarapandian, B.V.R Chowdari, and P. Christopher Selvin: Preparation, characterization, and electrochemical performance of lithium trivanadate rods by a surfactant-assisted polymer precursor method for lithium batteries. J. Phys. Chem. C 114, 8099 (2010).

    Article  CAS  Google Scholar 

  49. D.A. Semenenko, D.M. Itkis, E.A. Pomerantseva, E.A. Goodilin, T.L. Kulova, A.M. Skundin, and Y.D. Tretyakov: LixV2O5 nanobelts for high capacity lithium-ion battery cathodes. Electrochem. Commun. 12, 1154 (2010).

    Article  CAS  Google Scholar 

  50. H.M. Liu, Y.G. Wang, L. Li, K.X. Wang, E. Hosono, and H.S. Zhou: Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. J. Mater. Chem. 19, 7885 (2009).

    Article  CAS  Google Scholar 

  51. J.T. Kenneth, A.L. Randolph, J.P. Marcus, C.M. Amy, and S.T. Esther: Advanced lithium batteries for implantable medical devices: Mechanistic study of SVO cathode synthesis. J. Power Sources 119-, 973 (2003).

    Google Scholar 

  52. C.J. Mao, X.C. Wu, and J.J. Zhu: Large scale preparation of beta-AgVO3 nanowires using a novel sonochemical route. J. Nanosci. Nanotechnol. 8, 3203 (2008).

    Article  CAS  Google Scholar 

  53. S.Y. Zhang, W.Y. Li, C.S. Li, and J. Chen: Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/microstructures. J. Phys. Chem. B 110, 24855 (2006).

    Article  CAS  Google Scholar 

  54. Q. Gao, L.Q. Mai, L. Xu, Y.H. Gu, B. Hu, Y.L. Zhao, and J.H. Han: Construction and electrical transport properties of one-dimensional vanadium oxide nanomaterials. Sciencepaper Online 5, 323 (2010).

    CAS  Google Scholar 

  55. K.C. Cheng, F.R. Chen, and J.J. Kai: V2O5 nanowires as a functional material for electrochromic device. Sol. Energy Mater. Sol. Cells 90, 1156 (2006).

    Article  CAS  Google Scholar 

  56. C.R. Xiong, A.E. Aliev, B. Gnade, and K.J. Balkus Jr.: Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics. ACS Nano 2, 293 (2008).

    Article  CAS  Google Scholar 

  57. W. Zhang, T. Yang, W.J. Li, G.C. Li, and K. Jiao: Rapid and sensitive electrochemical sensing of DNA damage induced by V2O5 nanobelts/HCl/H2O2 system in natural dsDNA layer-by-layer films. Biosens. Bioelectron. 25, 2370 (2010).

    Article  CAS  Google Scholar 

  58. A. Zylbersztejn and N.F. Mott: Metal-insulator transition in vanadium dioxide. Phys. Rev. B 11, 4383 (1975).

    Article  CAS  Google Scholar 

  59. D. Xiao, K.W. Kim, and J.M. Zavada: Electrically programmable photonic crystal slab based on the metal-insulator transition in VO2. J. Appl. Phys. 97, 106102 (2005).

    Article  CAS  Google Scholar 

  60. D. Xiao, K.W. Kim, G. Lazzi, and J.M. Zavada: Tunable waveguiding in electrically programmable VO2-based photonic crystals. J. Appl. Phys. 99, 113106 (2006).

    Article  CAS  Google Scholar 

  61. I.M. Povey, M. Bardosova, F. Chalvet, M.E. Pemble, and H.M. Yates: Atomic layer deposition for the fabrication of 3D photonic crystals structures: Growth of Al2O3 and VO2 photonic crystal systems. Surf. Coat. Tech. 201, 9345 (2007).

    Article  CAS  Google Scholar 

  62. A.B. Pevtsov, D.A. Kurdyukov, V.G. Golubev, A.V. Akimov, A.A. Meluchev, A.V. Sel’kin, A.A. Kaplyanskii, D.R. Yakovlev, and M. Bayer: Ultrafast stop band kinetics in a three-dimensional opal- VO2 photonic crystal controlled by a photoinduced semiconductor-metal phase transition. Phys. Rev. B 75, 153101 (2007).

    Article  CAS  Google Scholar 

  63. B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V.V. Tsukruk, and Z.L. Wang: External-strain induced insulating phase transition in VO2 nanobeam and its application as flexible strain sensor. Adv. Mater. 22, 5134 (2010).

    Article  CAS  Google Scholar 

  64. J.K. Campbell, L. Sun, and R.M. Crooks: Electrochemistry using single carbon nanotubes. J. Am. Chem. Soc. 121, 3779 (1999).

    Article  CAS  Google Scholar 

  65. I. Heller, J. Kong, H.A. Heering, K.A. Williams, S.G. Lemay, and C. Dekker: Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Nano Lett. 5, 137 (2005).

    Article  CAS  Google Scholar 

  66. Y. Yang, C. Xie, R. Ruffo, H.L. Peng, D.K. Kim, and Y. Cui: Single nanorod devices for battery diagnostics: A case study on LiMn2O4. Nano Lett. 9, 4109 (2009).

    Article  CAS  Google Scholar 

  67. Y. Yang, C. Xie, R. Ruffo, H.L. Peng, D.K. Kim, and Y. Cui: Single nanorod devices for battery diagnostics: A case study on LiMn2O4. Nano Lett. 9, 4109 (2009).

    Article  CAS  Google Scholar 

  68. J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S. Mao, N. Hudak, X.H. Liu, A.K. Subramanian, H. Fan, L. Qi, A. Kushima, and J. Li: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515 (2010).

    Article  CAS  Google Scholar 

  69. C.M. Wang, W. Xu, J. Liu, D. Choi, B.W. Arey, L.V. Saraf, J. Zhang, Z. Yang, S. Thevuthasan, D.R. Baer, and N. Salmon: In-situ transmission electron microscopy and spectroscopy studies of interfaces in Li-ion batteries: Challenges and opportunities. J. Mater. Res. 25, 1541 (2010).

    Article  CAS  Google Scholar 

  70. L.Q. Mai, Y.J. Dong, L. Xu, and C.H. Han: Single nanowire electrochemical devices. Nano Lett. 10, 4273 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Nature Science Foundation of China (50702039 and 51072153), Program for New Century Excellent Talents in University (NCET-10-0661), Self-Determined and Innovative Re-search Funds of SKLWUT and the Fundamental Research Funds for the Central Universities (2010-II-016). We thank Prof. C.M. Lieber of Harvard University, Prof. Z.L. Wang of Georgia Institute of Technology, Dr. Y.J. Dong, and Prof. Y. Shao of Massachusetts Institute of Technology for stimulating discussions and effective collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Mai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mai, L., Xu, X., Xu, L. et al. Vanadium oxide nanowires for Li-ion batteries. Journal of Materials Research 26, 2175–2185 (2011). https://doi.org/10.1557/jmr.2011.171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.171

Navigation