Skip to main content

Advertisement

Log in

The evolution of low temperature solid oxide fuel cells

  • Invited Feature Paper
  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Low temperature solid oxide fuel cells (SOFCs) are a promising solution to revolutionize stationary, transportation, and personal power energy conversion efficiency. Through investigation of fundamental conduction mechanisms, we have developed the highest conductivity solid electrolyte, stabilized bismuth oxide (Dy0.08W0.04Bi0.88O0.36). To overcome its inherent thermodynamic instability in the anode environment, we invented a functionally graded bismuth oxide/ceria bilayered electrolyte. For compatibility with this bilayared electrolyte, we developed high performance bismuth ruthenate–bismuth oxide composite cathodes. Finally, these components were integrated into an anode-supported cell with an anode functional layer, resulting in an exceptionally high power density of ∼2 W/cm2 at moderate temperatures (650 °C) and sufficient power down to 300–400 °C for most applications. Moreover, because SOFCs can operate on conventional fuels, these low temperature SOFCs provide one of the most efficient energy conversion technologies available without relying on a hydrogen infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17

Similar content being viewed by others

References

  1. E.D. Wachsman and K.T. Lee: Lowering the temperature of solid oxide fuel cells. Science 334, 935 (2011).

    Article  CAS  Google Scholar 

  2. E.D. Wachsman, C.A. Marlowe, and K.T. Lee: Role of solid oxide fuel cells in a balanced energy strategy. Energy Environ. Sci. 5, 5498 (2012).

    Article  Google Scholar 

  3. B.C.H Steele: Material science and engineering: The enabling technology for the commercialisation of fuel cell systems. J. Mater. Sci. 36, 1053 (2001).

    Article  CAS  Google Scholar 

  4. E.D. Wachsman, N. Jiang, D.M. Mason, and D.A. Stevenson: Solid state oxygen kinetics in Er2O3 stabilized Bi2O3. Proc. Electrochem. Soc. 89, 15 (1989).

    Google Scholar 

  5. E.D. Wachsman, N. Jiang, C.W. Frank, D.M. Mason, and D.A. Stevenson: Spectroscopic investigation of oxygen vacancies in solid oxide electrolytes. Appl. Phys. A: Mater. Sci. Process. 50, 545 (1990).

    Article  Google Scholar 

  6. E.D. Wachsman, G.R. Ball, N. Jiang, and D.A. Stevenson: Structural and defect studies in solid oxide electrolytes. Solid State Ionics 52, 213 (1992).

    Article  CAS  Google Scholar 

  7. N. Jiang, R.M. Buchanan, F.E.G Henn, A.F. Marshall, D.A. Stevenson, and E.D. Wachsman: Aging phenomenon of stabilized bismuth oxides. Mater. Res. Bull. 29, 247 (1994).

    Article  CAS  Google Scholar 

  8. N.X. Jiang and E.D. Wachsman: Structural stability and conductivity of phase-stabilized cubic bismuth oxides. J. Am. Ceram. Soc. 82, 3057 (1999).

    Article  CAS  Google Scholar 

  9. E.D. Wachsman, S. Boyapati, M.J. Kaufman, and N.X. Jiang: Modeling of ordered structures of phase-stabilized cubic bismuth oxides. J. Am. Ceram. Soc. 83, 1964 (2000).

    Article  CAS  Google Scholar 

  10. S. Boyapati, E.D. Wachsman, and N.X. Jiang: Effect of oxygen sublattice ordering on interstitial transport mechanism and conductivity activation energies in phase-stabilized cubic bismuth oxides. Solid State Ionics 140, 149 (2001).

    Article  CAS  Google Scholar 

  11. S. Boyapati, E.D. Wachsman, and B.C. Chakoumakos: Neutron diffraction study of occupancy and positional order of oxygen ions in phase stabilized cubic bismuth oxides. Solid State Ionics 138, 293 (2001).

    Article  CAS  Google Scholar 

  12. E.D. Wachsman, S. Boyapati, and N. Jiang: Effect of dopant polarizability on oxygen sublattice order in phase-stable cubic bismuth oxide. Ionics 7, 6 (2001).

    Article  Google Scholar 

  13. N.X. Jiang, E.D. Wachsman, and S.H. Jung: A higher conductivity Bi2O3-based electrolyte. Solid State Ionics 150, 347 (2002).

    Article  CAS  Google Scholar 

  14. E.D. Wachsman: Effect of oxygen sublattice order on conductivity in highly defective fluorite oxides. J. Eur. Ceram. Soc. 24, 1281 (2004).

    Article  CAS  Google Scholar 

  15. D.W. Jung, K.L. Duncan, and E.D. Wachsman: Effect of total dopant concentration and dopant ratio on conductivity of (DyO1.5)x-(WO3)y-(BiO1.5)1-x-y. Acta Mater. 58, 355 (2010).

    Article  CAS  Google Scholar 

  16. D.W. Jung, J.C. Nino, K.L. Duncan, S.R. Bishop, and E.D. Wachsman: Enhanced long-term stability of bismuth oxide-based electrolytes for operation at 500 A degrees C. Ionics 16, 97 (2010).

    Article  CAS  Google Scholar 

  17. D.W. Jung, K.L. Duncan, M.A. Camaratta, K.T. Lee, J.C. Nino, and E.D. Wachsman: Effect of annealing temperature and dopant concentration on the conductivity behavior in (DyO1.5)x-(WO3)y-(BiO1.5)1-x-y. J. Am. Ceram. Soc. 93, 1384 (2010).

    CAS  Google Scholar 

  18. E.D. Wachsman, P. Jayaweera, N. Jiang, D.M. Lowe, and B.G. Pound: Stable high conductivity ceria/bismuth oxide bilayered electrolytes. J. Electrochem. Soc. 144, 233 (1997).

    Article  CAS  Google Scholar 

  19. A. Jaiswal, C.T. Hu, and E.D. Wachsman: Bismuth ruthenate-stabilized bismuth oxide composite cathodes for IT-SOFC. J. Electrochem. Soc. 154, B1088 (2007).

    Article  CAS  Google Scholar 

  20. M. Camaratta and E. Wachsman: High-performance composite Bi2Ru2O7-Bi1.6Er0.4O3 cathodes for intermediate-temperature solid oxide fuel cells. J. Electrochem. Soc. 155, B135 (2008).

    Article  CAS  Google Scholar 

  21. J.S. Ahn, M.A. Camaratta, D. Pergolesi, K.T. Lee, H. Yoon, B.W. Lee, D.W. Jung, E. Traversa, and E.D. Wachsman: Development of high performance ceria/bismuth oxide bilayered electrolyte SOFCs for lower temperature operation. J. Electrochem. Soc. 157, B376 (2010).

    Article  CAS  Google Scholar 

  22. J.S. Ahn, D. Pergolesi, M.A. Camaratta, H. Yoon, B.W. Lee, K.T. Lee, D.W. Jung, E. Traversa, and E.D. Wachsman: High-performance bilayered electrolyte intermediate temperature solid oxide fuel cells. Electrochem. Commun. 11, 1504 (2009).

    Article  CAS  Google Scholar 

  23. B.C.H Steele and A. Heinzel: Materials for fuel-cell technologies. Nature 414, 345 (2001).

    Article  CAS  Google Scholar 

  24. S. deSouza, S.J. Visco, and L.C. DeJonghe: Thin-film solid oxide fuel cell with high performance at low-temperature. Solid State Ionics 98, 57 (1997).

    Article  CAS  Google Scholar 

  25. B.C.H Steele: Interfacial reactions associated with ceramic ion-transport membranes. Solid State Ionics 75, 157 (1995).

    Article  CAS  Google Scholar 

  26. T. Takahashi, T. Esaka, and H. Iwahara: High oxide ion conduction in sintered oxides of system Bi2O3-Gd2O3. J. Appl. Electrochem. 5, 197 (1975).

    Article  CAS  Google Scholar 

  27. H.A. Harwig: Structure of bismuthsesquioxide–alpha, beta, gamma and delta-phase. Z. Anorg. Allg. Chem. 444, 151 (1978).

    Article  CAS  Google Scholar 

  28. T. Takahashi, T. Esaka, and H. Iwahara: Electrical-conduction in sintered oxides of system Bi2O3-BaO. J. Solid State Chem. 16, 317 (1976).

    Article  CAS  Google Scholar 

  29. M.J. Verkerk, K. Keizer, and A.J. Burggraaf: High oxygen ion conduction in sintered oxides of the Bi2O3-Er2O3 system. J. Appl. Electrochem. 10, 81 (1980).

    Article  CAS  Google Scholar 

  30. L.G. Sillen: X-ray studies on bismuth trioxide. Ark. Kemi Mineral. Geol. 12A, 15 (1937).

    Google Scholar 

  31. G. Gattow and H. Schröder: About bismuth oxides. III. The crystal structure of the high-temperature modification of bismuth (III) oxide (δ-Bi2O3). Z. Anorg. Allg. Chem. 318, 14 (1962).

    Article  Google Scholar 

  32. B.T.M Willis: The anomalous behaviour of the neutron reflexion of fluorite. Acta Crystallogr. 18, 2 (1965).

    Article  Google Scholar 

  33. D.S. Aidhy, J.C. Nino, S.B. Sinnott, E.D. Wachsman, and S.R. Phillpot: Vacancy-ordered structure of cubic bismuth oxide from simulation and crystallographic analysis. J. Am. Ceram. Soc. 91, 2349 (2008).

    Article  CAS  Google Scholar 

  34. D.S. Aidhy, S.B. Sinnott, E.D. Wachsman, S.R. Phillpot, and J.C. Nino: Structure of delta-Bi2O3 from density functional theory: A systematic crystallographic analysis. J. Solid State Chem. 182, 1222 (2009).

    Article  CAS  Google Scholar 

  35. S.N. Hoda and L.L.Y Chang: Phase relations in system Bi2O3-WO3. J. Am. Ceram. Soc. 57, 323 (1974).

    Article  CAS  Google Scholar 

  36. A. Watanabe and A. Ono: Thermostable region of an oxide ion conductor, Bi7WO13.5 (=7Bi2O3 -2WO3), and the solid solubility extension. Solid State Ionics 174, 15 (2004).

    Article  CAS  Google Scholar 

  37. T. Takahashi, T. Esaka, and H. Iwahara: Conduction in Bi2O3-based oxide ion conductors under low oxygen-pressure. 1. Current blackening of Bi2O3-Y2O3 electrolyte. J. Appl. Electrochem. 7, 299 (1977).

    Article  CAS  Google Scholar 

  38. C.Z. Wang, X.G. Xu, and B.Z. Li: Ionic and electronic conduction of oxygen ion conductors in the Bi2O3-Y2O3 system. Solid State Ionics 13, 135 (1984).

    Article  CAS  Google Scholar 

  39. P. Duran, J.R. Jurado, C. Moure, N. Valverde, and B.C.H Steele: High oxygen ion conduction in some Bi2O3-Y2O3(Er2O3) solid-solutions. Mater. Chem. Phys. 18, 287 (1987).

    Article  CAS  Google Scholar 

  40. H. Yahiro, Y. Eguchi, K. Eguchi, and H. Arai: Oxygen ion conductivity of the ceria samarium oxide system with fluorite structure. J. Appl. Electrochem. 18, 527 (1988).

    Article  CAS  Google Scholar 

  41. K. Eguchi, T. Setoguchi, T. Inoue, and H. Arai: Electrical-properties of ceria-based oxides and their application to solid oxide fuel-cells. Solid State Ionics 52, 165 (1992).

    Article  CAS  Google Scholar 

  42. B.C.H Steele: Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 degrees C. Solid State Ionics 129, 95 (2000).

    Article  CAS  Google Scholar 

  43. S. Omar, E.D. Wachsman, and J.C. Nino: A co-doping approach towards enhanced ionic conductivity in fluorite-based electrolytes. Solid State Ionics 177, 3199 (2006).

    Article  CAS  Google Scholar 

  44. S. Omar, E.D. Wachsman, and J.C. Nino: Higher ionic conductive ceria-based electrolytes for solid oxide fuel cells. Appl. Phys. Lett. 91, 114106–1–114106–3 (2007).

    Article  CAS  Google Scholar 

  45. S. Omar, E.D. Wachsman, and J.C. Nino: Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials. Solid State Ionics 178, 1890 (2008).

    Article  CAS  Google Scholar 

  46. D.A. Andersson, S.I. Simak, N.V. Skorodumova, I.A. Abrikosov, and B. Johansson: Optimization of ionic conductivity in doped ceria. Proc. Natl. Acad. Sci. U.S.A. 103, 3518 (2006).

    Article  CAS  Google Scholar 

  47. R.D. Shannon: Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976).

    Article  Google Scholar 

  48. J.S. Ahn, S. Omar, H. Yoon, J.C. Nino, and E.D. Wachsman: Performance of anode-supported solid oxide fuel cell using novel ceria electrolyte. J. Power Sources 195, 2131 (2010).

    Article  CAS  Google Scholar 

  49. K.L. Duncan and E.D. Wachsman: Continuum-level analytical model for solid oxide fuel cells with mixed conducting electrolytes. J. Electrochem. Soc. 156, B1030 (2009).

    Article  CAS  Google Scholar 

  50. S.M. Haile: Fuel cell materials and components. Acta Mater. 51, 5981 (2003).

    Article  CAS  Google Scholar 

  51. K.T. Lee, N.J. Vito, C.A. Mattehw, H.S. Yoon, and E.D. Wachsman: Effect of Ni-GDC AFL composition on performance of IT-SOFCs. ECS Trans. 28, 151 (2010).

    Article  CAS  Google Scholar 

  52. D.J.L Brett, A. Atkinson, N.P. Brandon, and S.J. Skinner: Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568 (2008).

    Article  CAS  Google Scholar 

  53. X. Zhang, M. Robertson, C. Deces-Petit, W. Qu, O. Kesler, R. Maric, and D. Ghosh: Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte. J. Power Sources 164, 668 (2007).

    Article  CAS  Google Scholar 

  54. K.L. Duncan, K.T. Lee, and E.D. Wachsman: Dependence of open-circuit potential and power density on electrolyte thickness in solid oxide fuel cells with mixed conducting electrolytes. J. Power Sources 196, 2445 (2011).

    Article  CAS  Google Scholar 

  55. J.Y. Park and E.D. Wachsman: Stable and high conductivity ceria/bismuth oxide bilayer electrolytes for lower temperature solid oxide fuel cells. Ionics 12, 15 (2006).

    Article  CAS  Google Scholar 

  56. E.D. Wachsman: Functionally gradient bilayer oxide membranes and electrolytes. Solid State Ionics 152, 657 (2002).

    Article  Google Scholar 

  57. K.T. Lee, D.W. Jung, M.A. Camaratta, J.S. Ahn, and E.D. Wachsman: Gd0.1Ce0.9O1.95/Er0.2Bi1.6O3 bilayered electrolytes fabricated by a simple colloidal route using nano-sized Er0.2Bi1.6O3 powders for high performance LT-SOFCs. J. Power Sources 205, 122 (2012).

    Article  CAS  Google Scholar 

  58. Q.L. Liu, K.A. Khor, S.H. Chan, and X.J. Chen: Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilayer electrolyte prepared by wet ceramic co-sintering process. J. Power Sources 162, 1036 (2006).

    Article  CAS  Google Scholar 

  59. H.T. Lim and A.V. Virkar: Measurement of oxygen chemical potential in Gd2O3-doped ceria-Y2O3-stabilized zirconia bi-layer electrolyte, anode-supported solid oxide fuel cells. J. Power Sources 192, 267 (2009).

    Article  CAS  Google Scholar 

  60. C.R. Xia, W. Rauch, F.L. Chen, and M.L. Liu: Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics 149, 11 (2002).

    Article  CAS  Google Scholar 

  61. K. Sasaki, J. Tamura, H. Hosoda, T.N. Lan, K. Yasumoto, and M. Dokiya: Pt-perovskite cermet cathode for reduced-temperature SOM. Solid State Ionics 148, 551 (2002).

    Article  CAS  Google Scholar 

  62. T. Ishihara, T. Kudo, H. Matsuda, and Y. Takita: Doped PrMnO3 perovskite oxide as a new cathode of solid oxide fuel-cells for low-temperature operation. J. Electrochem. Soc. 142, 1519 (1995).

    Article  CAS  Google Scholar 

  63. M. Mogensen and S. Skaarup: Kinetic and geometric aspects of solid oxide fuel cell electrodes. Solid State Ionics 86–, 1151 (1996).

    Article  Google Scholar 

  64. M. Godickemeier, K. Sasaki, L.J. Gauckler, and I. Riess: Perovskite cathodes for solid oxide fuel cells based on ceria electrolytes. Solid State Ionics 86–, 691 (1996).

    Article  Google Scholar 

  65. N.Q. Minh: Ceramic fuel-cells. J. Am. Ceram. Soc. 76, 563 (1993).

    Article  CAS  Google Scholar 

  66. E.P. Murray, T. Tsai, and S.A. Barnett: Oxygen transfer processes in (La, Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: An impedance spectroscopy study. Solid State Ionics 110, 235 (1998).

    Article  CAS  Google Scholar 

  67. S.P. Yoon, J. Han, S.W. Nam, T.H. Lim, I.H. Oh, S.A. Hong, Y.S. Yoo, and H.C. Lim: Performance of anode-supported solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol-gel coating technique. J. Power Sources 106, 160 (2002).

    Article  CAS  Google Scholar 

  68. S.P. Jiang: Issues on development of (La, Sr)MnO3 cathode for solid oxide fuel cells. J. Power Sources 124, 390 (2003).

    Article  CAS  Google Scholar 

  69. N.P. Brandon, S. Skinner, and B.C.H Steele: Recent advances in materials for fuel cells. Annu. Rev. Mater. Res. 33, 183 (2003).

    Article  CAS  Google Scholar 

  70. C.W. Tanner, K.Z. Fung, and A.V. Virkar: The effect of porous composite electrode structure on solid oxide fuel cell performance. 1. Theoretical analysis. J. Electrochem. Soc. 144, 21 (1997).

    Article  CAS  Google Scholar 

  71. E.P. Murray and S.A. Barnett: (La, Sr) MnO3-(Ce, Gd)O2-x composite cathodes for solid oxide fuel cells. Solid State Ionics 143, 265 (2001).

    Article  Google Scholar 

  72. S.P. Jiang: A comparison of O−2 reduction reactions on porous (La, Sr)MnO3 and (La, Sr)(Co, Fe)O3 electrodes. Solid State Ionics 146, 1 (2002).

    Article  CAS  Google Scholar 

  73. I. Yasuda, K. Ogasawara, M. Hishinuma, T. Kawada, and M. Dokiya: Oxygen tracer diffusion coefficient of (La, Sr)MnO3+/-delta. Solid State Ionics 86–, 1197 (1996).

    Article  Google Scholar 

  74. C.C. Kan, H.H. Kan, F.M. Van Assche, E.N. Armstrong, and E.D. Wachsman: Investigating oxygen surface exchange kinetics of La0.8Sr0.2MnO3-delta and La0.6Sr0.4Co0.2Fe0.8O3-delta using an isotopic tracer. J. Electrochem. Soc. 155, B985 (2008).

    Article  CAS  Google Scholar 

  75. S.B. Adler: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791 (2004).

    Article  CAS  Google Scholar 

  76. J.M. Vohs and R.J. Gorte: High-performance SOFC cathodes prepared by infiltration. Adv. Mater. 21, 943 (2009).

    Article  CAS  Google Scholar 

  77. L. Baque, A. Caneiro, M.S. Moreno, and A. Serquis: High performance nanostructured IT-SOFC cathodes prepared by novel chemical method. Electrochem. Commun. 10, 1905 (2008).

    Article  CAS  Google Scholar 

  78. J.R. Wilson and S.A. Barnett: Solid oxide fuel cell Ni-YSZ anodes: Effect of composition on microstructure and performance. Electrochem. Solid-State Lett. 11, B181 (2008).

    Article  CAS  Google Scholar 

  79. N. Shikazono, Y. Sakamoto, Y. Yamaguchi, and N. Kasagi: Microstructure and polarization characteristics of anode supported tubular solid oxide fuel cell with co-precipitated and mechanically mixed Ni-YSZ anodes. J. Power Sources 193, 530 (2009).

    Article  CAS  Google Scholar 

  80. A. Bieberle, L.P. Meier, and L.J. Gauckler: The electrochemistry of Ni pattern anodes used as solid oxide fuel cell model electrodes. J. Electrochem. Soc. 148, A646 (2001).

    Article  CAS  Google Scholar 

  81. J.R. Wilson, W. Kobsiriphat, R. Mendoza, H.Y. Chen, J.M. Hiller, D.J. Miller, K. Thornton, P.W. Voorhees, S.B. Adler, and S.A. Barnett: Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat. Mater. 5, 541 (2006).

    Article  CAS  Google Scholar 

  82. D. Gostovic, J.R. Smith, D.P. Kundinger, K.S. Jones, and E.D. Wachsman: Three-dimensional reconstruction of porous LSCF cathodes. Electrochem. Solid-State Lett. 10, B214 (2007).

    Article  CAS  Google Scholar 

  83. J.R. Smith, A. Chen, D. Gostovic, D. Hickey, D. Kundinger, K.L. Duncan, R.T. DeHoff, K.S. Jones, and E.D. Wachsman: Evaluation of the relationship between cathode microstructure and electrochemical behavior for SOFCs. Solid State Ionics 180, 90 (2009).

    Article  CAS  Google Scholar 

  84. J.R. Wilson, A.T. Duong, M. Gameiro, H.Y. Chen, K. Thornton, D.R. Mumm, and S.A. Barnett: Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode. Electrochem. Commun. 11, 1052 (2009).

    Article  CAS  Google Scholar 

  85. J.R. Wilson, M. Gameiro, K. Mischaikow, W. Kalies, P.W. Voorhees, and S.A. Barnett: Three-dimensional analysis of solid oxide fuel cell Ni-YSZ anode interconnectivity. Microsc. Microanal. 15, 71 (2009).

    Article  CAS  Google Scholar 

  86. J.R. Wilson, J.S. Cronin, A.T. Duong, S. Rukes, H.Y. Chen, K. Thornton, D.R. Mumm, and S. Barnett: Effect of composition of (La0.8Sr0.2MnO3-Y2O3-stabilized ZrO2) cathodes: Correlating three-dimensional microstructure and polarization resistance. J. Power Sources 195, 1829 (2010).

    Article  CAS  Google Scholar 

  87. N. Shikazono, D. Kanno, K. Matsuzaki, H. Teshima, S. Sumino, and N. Kasagi: Numerical assessment of SOFC anode polarization based on three-dimensional model microstructure reconstructed from FIB-SEM images. J. Electrochem. Soc. 157, B665 (2010).

    Article  CAS  Google Scholar 

  88. C.C. Kan and E.D. Wachsman: Identifying drivers of catalytic activity through systematic surface modification of cathode materials. J. Electrochem. Soc. 156, B695 (2009).

    Article  CAS  Google Scholar 

  89. C.C. Kan and E.D. Wachsman: Isotopic-switching analysis of oxygen reduction in solid oxide fuel cell cathode materials. Solid State Ionics 181, 338 (2010).

    Article  CAS  Google Scholar 

  90. Z.P. Shao and S.M. Haile: A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170 (2004).

    Article  CAS  Google Scholar 

  91. A. Jaiswal and E.D. Wachsman: Bismuth-ruthenate-based cathodes for IT-SOFCs. J. Electrochem. Soc. 152, A787 (2005).

    Article  CAS  Google Scholar 

  92. A. Jaiswal and E. Wachsman: Impedance studies on bismuth-ruthenate-based electrodes. Ionics 15, 1 (2009).

    Article  CAS  Google Scholar 

  93. K.S. Lee, D.K. Seo, and M.H. Whangbo: Structural and electronic factors governing the metallic and nonmetallic properties of the pyrochlores A2Ru2O7-y. J. Solid State Chem. 131, 405 (1997).

    Article  CAS  Google Scholar 

  94. M. Camaratta and E. Wachsman: Silver-bismuth oxide cathodes for IT-SOFCs - Part II - Improving stability through microstructural control. Solid State Ionics 178, 1411 (2007).

    Article  CAS  Google Scholar 

  95. M. Camaratta and E. Wachsman: Silver-bismuth oxide cathodes for IT-SOFCs; Part I - Microstructural instability. Solid State Ionics 178, 1242 (2007).

    Article  CAS  Google Scholar 

  96. J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, and L.J. Gauckler: Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics 131, 79 (2000).

    Article  CAS  Google Scholar 

  97. J.W. Kim, A.V. Virkar, K.Z. Fung, K. Mehta, and S.C. Singhal: Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells. J. Electrochem. Soc. 146, 69 (1999).

    Article  CAS  Google Scholar 

  98. J.S. Ahn, H. Yoon, K.T. Lee, M.A. Camaratta, and E.D. Wachsman: Performance of IT-SOFC with Ce0.9Gd0.1O1.95 functional layer at the interface of Ce0.9Gd0.1O1.95 electrolyte and Ni-Ce0.9Gd0.1O1.95 anode. Fuel Cells 9, 643 (2009).

    Article  CAS  Google Scholar 

  99. N. Ai, Z. Lu, K.F. Chen, X.Q. Huang, X.B. Du, and W.H. Su: Effects of anode surface modification on the performance of low temperature SOFCs. J. Power Sources 171, 489 (2007).

    Article  CAS  Google Scholar 

  100. J.J. Haslam, A.Q. Pham, B.W. Chung, J.F. DiCarlo, and R.S. Glass: Effects of the use of pore formers on performance of an anode supported solid oxide fuel cell. J. Am. Ceram. Soc. 88, 513 (2005).

    Article  CAS  Google Scholar 

  101. N. Ai, Z. Lu, J.K. Tang, K.F. Chen, X.Q. Huang, and W.H. Su: Improvement of output performance of solid oxide fuel cell by optimizing Ni/samaria-doped ceria anode functional layer. J. Power Sources 185, 153 (2008).

    Article  CAS  Google Scholar 

  102. D. Stover, H.P. Buchkremer, and S. Uhlenbruck: Processing and properties of the ceramic conductive multilayer device solid oxide fuel cell (SOFC). Ceram. Int. 30, 1107 (2004).

    Article  CAS  Google Scholar 

  103. S.D. Kim, S.H. Hyun, J. Moon, J.H. Kim, and R.H. Song: Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells. J. Power Sources 139, 67 (2005).

    Article  CAS  Google Scholar 

  104. E. Wanzenberg, F. Tietz, P. Panjan, and D. Stover: Influence of pre- and post-heat treatment of anode substrates on the properties of DC-sputtered YSZ electrolyte films. Solid State Ionics 159, 1 (2003).

    Article  CAS  Google Scholar 

  105. K.T. Lee, H.S. Yoon, J.S. Ahn, and E.D. Wachsman: Bimodally integrated Ni-Gd0.1Ce0.9O1.95 anode functional layer for lower temperature SOFCs. Int. J. Hydrogen Energy (2012, submitted).

    Google Scholar 

  106. C.W. Sun and U. Stimming: Recent anode advances in solid oxide fuel cells. J. Power Sources 171, 247 (2007).

    Article  CAS  Google Scholar 

  107. E.P. Murray, T. Tsai, and S.A. Barnett: A direct-methane fuel cell with a ceria-based anode. Nature 400, 649 (1999).

    Article  CAS  Google Scholar 

  108. Z.L. Zhan and S.A. Barnett: An octane-fueled solid oxide fuel cell. Science 308, 844 (2005).

    Article  CAS  Google Scholar 

  109. L. Yang, S.Z. Wang, K. Blinn, M.F. Liu, Z. Liu, Z. Cheng, and M.L. Liu: Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-delta. Science 326, 126 (2009).

    Article  CAS  Google Scholar 

  110. S.D. Park, J.M. Vohs, and R.J. Gorte: Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265 (2000).

    Article  CAS  Google Scholar 

  111. R.J. Gorte and J.M. Vohs: Nanostructured anodes for solid oxide fuel cells. Curr. Opin. Colloid Interface Sci. 14, 236 (2009).

    Article  CAS  Google Scholar 

  112. J. Pena-Martinez, D. Marrero-Lopez, J.C. Ruiz-Morales, C. Savaniu, P. Nunez, and J.T.S Irvine: Anodic performance and intermediate temperature fuel cell testing of La0.75Sr0.25Cr0.5Mn0.5O3-delta at lanthanum gallate electrolytes. Chem. Mater. 18, 1001 (2006).

    Article  CAS  Google Scholar 

  113. Q.X. Fu, F. Tietz, and D. Stover: La0.4Sr0.6Ti1-xMnxO3-delta perovskites as anode materials for solid oxide fuel cells. J. Electrochem. Soc. 153, D74 (2006).

    Article  CAS  Google Scholar 

  114. Y.H. Huang, R.I. Dass, Z.L. Xing, and J.B. Goodenough: Double perovskites as anode materials for solid-oxide fuel cells. Science 312, 254 (2006).

    Article  CAS  Google Scholar 

  115. K.T. Lee, C.M. Gore, and E.D. Wachsman: Performance of lower temperature solid oxide fuel cells operating on reformed hydrocarbon fuels. J. Power Sources (2012, submitted).

    Google Scholar 

  116. K.T. Lee, D.W. Jung, H.S. Yoon, M. Camaratta, N. Sexson, and E. Wachsman: High performance LSM-ESB cathode on ESB electrolyte for low to intermediate temperature solid oxide fuel cells. ECS Trans. 35, 1861 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric D. Wachsman.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.T., Yoon, H.S. & Wachsman, E.D. The evolution of low temperature solid oxide fuel cells. Journal of Materials Research 27, 2063–2078 (2012). https://doi.org/10.1557/jmr.2012.194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.194

Navigation