Skip to main content

Advertisement

Log in

TiO2-polyheptazine hybrid photoanodes: Effect of cocatalysts and external bias on visible light-driven water splitting

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Photoanodes based on TiO2-polyheptazine (TiO2-PH) hybrids are, due to the energetics of photogenerated charges, very promising for solar water splitting in terms of possibly reduced need for external electric bias. Visible (λ > 420 nm) light-driven photooxidation of water at TiO2-PH electrodes loaded with two different metal oxide cocatalysts was investigated. As compared with TiO2-PH photoanodes loaded with colloidal [iridium (IV) oxide] IrO2 deposited by colloidal deposition, photoelectrodes modified with CoOx oxygen-evolving cocatalyst (Co-Pi) deposited by photoassisted deposition precipitation method showed both higher photocurrents and more efficient oxygen evolution under prolonged irradiation. The minimum external electric bias needed to observe complete photooxidation of water to dioxygen at TiO2-PH photoanodes modified with Co-Pi was estimated to be ∼0.6 V at pH 7. The key factor limiting the photoconversion efficiency at low bias potentials is the fast primary recombination of photogenerated charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. N.S. Lewis and D.G. Nocera: Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U.S.A. 103, 15729 (2006).

    Article  CAS  Google Scholar 

  2. O. Khaselev and J.A. Turner: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425 (1998).

    Article  CAS  Google Scholar 

  3. A. Heller: Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells. Acc. Chem. Res. 14, 154 (1981).

    Article  CAS  Google Scholar 

  4. H.J. Lewerenz, C. Heine, K. Skorupska, N. Szabo, T. Hannappel, T. Vo-Dinh, S.A. Campbell, H.W. Klemm, and A.G. Munoz: Photoelectrocatalysis: Principles, nanoemitter applications and routes to bioinspired systems. Energy Environ. Sci. 3, 748 (2010).

    Article  CAS  Google Scholar 

  5. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, and H. Tributsch: Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting. Int. J. Hydrogen Energy 26, 653 (2001).

    Article  CAS  Google Scholar 

  6. H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, and P. Strasser: The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem 2, 724 (2010).

    Article  CAS  Google Scholar 

  7. J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, and J.K. Norskov: Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83 (2007).

    Article  CAS  Google Scholar 

  8. A. Valdés, Z.W. Qu, G.J. Kroes, J. Rossmeisl, and J.K. Nørskov: Oxidation and photooxidation of water on TiO2 surface. J. Phys. Chem. C 112, 9872 (2008).

    Article  Google Scholar 

  9. H. Wang, T. Deutsch, and J.A. Turner: Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. J. Electrochem. Soc. 155, F91 (2008).

    Article  CAS  Google Scholar 

  10. R. van de Krol, Y. Liang, and J. Schoonman: Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18, 2311 (2008).

    Article  Google Scholar 

  11. B.D. Alexander, P.J. Kulesza, I. Rutkowska, R. Solarska, and J. Augustynski: Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298 (2008).

    Article  CAS  Google Scholar 

  12. W.J. Youngblood, S.-H.A. Lee, Y. Kobayashi, E.A. Hernandez-Pagan, P.G. Hoertz, T.A. Moore, A.L. Moore, D. Gust, and T.E. Mallouk: Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical Cell. J. Am. Chem. Soc. 131, 926 (2009).

    Article  CAS  Google Scholar 

  13. H. Tributsch: Nanocomposite solar cells: The requirement and challenge of kinetic charge separation. J. Solid State Electrochem. 13, 1127 (2009).

    Article  CAS  Google Scholar 

  14. H. Dau and I. Zaharieva: Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc. Chem. Res. 42, 1861 (2009).

    Article  CAS  Google Scholar 

  15. J. Rossmeisl, K. Dimitrievski, P. Siegbahn, and J.K. Norskov: Comparing electrochemical and biological water splitting. J. Phys. Chem. C 111, 18821 (2007).

    Article  CAS  Google Scholar 

  16. W.J. Youngblood, S.-H.A. Lee, K. Maeda, and T.E. Mallouk: Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res. 42, 1966 (2009).

    Article  CAS  Google Scholar 

  17. M. Bledowski, L. Wang, A. Ramakrishnan, O.V. Khavryuchenko, V.D. Khavryuchenko, P.C. Ricci, J. Strunk, T. Cremer, C. Kolbeck, and R. Beranek: Visible-light photocurrent response of TiO2-polyheptazine hybrids: Evidence for interfacial charge-transfer absorption. Phys. Chem. Chem. Phys. 13, 21511 (2011).

    Article  CAS  Google Scholar 

  18. L. Wang, M. Bledowski, A. Ramakrishnan, D. König, A. Ludwig, and R. Beranek: Dynamics of photogenerated holes in TiO2-polyheptazine hybrid photoanodes for visible light-driven water splitting. J. Electrochem. Soc. 159, H616 (2012).

    Article  CAS  Google Scholar 

  19. M. Bledowski, L. Wang, A. Ramakrishnan, A. Betard, O.V. Khavryuchenko, and R. Beranek: Visible-light photooxidation of water to oxygen at hybrid TiO2–polyheptazine photoanodes with photodeposited Co-Pi (CoOx) cocatalyst. ChemPhysChem 13, 3018 (2012).

    Article  CAS  Google Scholar 

  20. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, and M. Antonietti: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76 (2009).

    Article  CAS  Google Scholar 

  21. Y. Wang, X. Wang, and M. Antonietti: Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 51, 68 (2012).

    Article  CAS  Google Scholar 

  22. M.W. Kanan and D.G. Nocera: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072 (2008).

    Article  CAS  Google Scholar 

  23. D.K. Zhong, M. Cornuz, K. Sivula, M. Gratzel, and D.R. Gamelin: Photoassisted electrodeposition of cobalt phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ. Sci. 4, 1759 (2011).

    Article  CAS  Google Scholar 

  24. K. Maeda, M. Higashi, B. Siritanaratkul, R. Abe, and K. Domen: SrNbO2N as a water-splitting photoanode with a wide visible-light absorption band. J. Am. Chem. Soc. 133, 12334 (2011).

    Article  CAS  Google Scholar 

  25. G. Hodes, I.D.J. Howell, and L.M. Peter: Nanocrystalline photoelectrochemical cells. A new concept in photovoltaic cells. J. Electrochem. Soc. 139, 3136 (1992).

    Article  CAS  Google Scholar 

  26. A. Wahl, M. Ulmann, A. Carroy, and J. Augustynski: Highly selective photooxidation reactions at nanocrystalline TiO2 film electrodes. J. Chem. Soc., Chem. Commun. 2277 (1994).

    Google Scholar 

  27. L.M. Peter: Dynamic aspects of semiconductor photoelectrochemistry. Chem. Rev. 90, 753 (1990).

    Article  CAS  Google Scholar 

  28. S.D. Tilley, M. Cornuz, K. Sivula, and M. Grätzel: Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 6405 (2010).

    Article  CAS  Google Scholar 

  29. A. Kay, I. Cesar, and M. Graetzel: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714 (2006).

    Article  CAS  Google Scholar 

  30. M. Gratzel: Photoelectrochemical cells. Nature 414, 338 (2001).

    Article  CAS  Google Scholar 

  31. R. Beranek: (Photo)electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials. Adv. Phys. Chem. (2011) doi:10.1155/2011/786759.

    Google Scholar 

Download references

Acknowledgments

We are thankful for financial support by the MIWFT-NRW within the project “Anorganische Nanomaterialien für Anwendungen in der Photokatalyse: Wasseraufbereitung und Wasserstoffgewinnung.” Dr. Pio John Buenconsejo and Prof. Alfred Ludwig are acknowledged for TEM measurements, and Sachtleben Chemie for a free sample of Hombikat UV 100. The support of the Center for Electrochemical Sciences (CES) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radim Beranek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bledowski, M., Wang, L., Ramakrishnan, A. et al. TiO2-polyheptazine hybrid photoanodes: Effect of cocatalysts and external bias on visible light-driven water splitting. Journal of Materials Research 28, 411–417 (2013). https://doi.org/10.1557/jmr.2012.297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.297

Navigation