Skip to main content

Advertisement

Log in

Selective electrodeposition of Ni into the intertubular voids of anodic TiO2 nanotubes for improved photocatalytic properties

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report on Ni-modified TiO2 nanotubes with improved photocatalytic properties. Using the as-anodized TiO2 nanotubes as templates, Ni was electrodeposited using pulsed current waveforms. It was found that the Ni deposition was first initiated at the bottoms of the intertubular voids and then grew upward, resulting in a Ni/TiO2 coaxial nanostructure with Ni wrapping around the TiO2 nanotubes. Moreover, the tube inside was kept empty and tube openings unclogged for the fabricated Ni/TiO2 nanocomposites. Further photodegradation tests using methyl red revealed that the fabricated Ni/TiO2 nanocomposites possess higher photocatalytic efficiency than the counterparts of pristine TiO2 nanotubes. The observed improved photocatalytic efficiency is ascribed to the Schottky barriers formed between Ni and TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.

Similar content being viewed by others

References

  1. D. Kim, P. Roy, K. Lee, and P. Schmuki: Dye-sensitized solar cells using anodic TiO2 mesosponge: Improved efficiency by TiCl4 treatment. Electrochem. Commun. 12, 574 (2010).

    Article  CAS  Google Scholar 

  2. C.J. Lin, W.Y. Yu, and S.H. Chien: Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J. Mater. Chem. 20, 1073 (2010).

    Article  CAS  Google Scholar 

  3. F. Sauvage, F. Di Fonzo, A.L. Bassi, C.S. Casari, V. Russo, G. Divitini, C. Ducati, C.E. Bottani, P. Comte, and M. Graetzel: Hierarchical TiO2 photoanode for dye-sensitized solar cells. Nano Lett. 10, 2562 (2010).

    Article  CAS  Google Scholar 

  4. D.A. Wang, T.C. Hu, L.T. Hu, B. Yu, Y.Q. Xia, F. Zhou, and W.M. Liu: Microstructured arrays of TiO2 Nanotubes for improved photo-electrocatalysis and mechanical stability. Adv. Funct. Mater. 19, 1930 (2009).

    Article  Google Scholar 

  5. H.A. Hamedani, N.K. Allam, H. Garmestani, and M.A. El-Sayed: Electrochemical fabrication of strontium-doped TiO2 nanotube array electrodes and investigation of their photoelectrochemical properties. J. Phys. Chem. C 115, 13480 (2011).

    Article  CAS  Google Scholar 

  6. G.M. Wang, H.Y. Wang, Y.C. Ling, Y.C. Tang, X.Y. Yang, R.C. Fitzmorris, C.C. Wang, J.Z. Zhang, and Y. Li: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026 (2011).

    Article  CAS  Google Scholar 

  7. G.F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J.L. Tirado, and P. Knauth: Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem. Mater. 21, 63 (2009).

    Article  CAS  Google Scholar 

  8. M. Salari, S.H. Aboutalebi, K. Konstantinov, and H.K. Liu: A highly ordered titania nanotube array as a supercapacitor electrode. Phys. Chem. Chem. Phys. 13, 5038 (2011).

    Article  CAS  Google Scholar 

  9. A. Ghicov, S.P. Alba, J.M. Macak, and P. Schmuki: High-contrast electrochromic switching using transparent lift-off layers of self-organized TiO2 nanotubes. Small 4, 1063 (2008).

    Article  CAS  Google Scholar 

  10. A. Ghicov, H. Tsuchiya, R. Hahn, J.M. Macak, A.G. Munoz, and P. Schmuki: TiO2 nanotubes: H+ insertion and strong electrochromic effects. Electrochem. Commun. 8, 528 (2006).

    Article  CAS  Google Scholar 

  11. R. Hahn, A. Ghicov, H. Tsuchiya, J.M. Macak, A.G. Munoz, and P. Schmuki: Lithium-ion insertion in anodic TiO2 nanotubes resulting in high electrochromic contrast. Phys. Status Solidi A 204, 1281 (2007).

    Article  CAS  Google Scholar 

  12. Y. Xie, L. Zhou, C. Huang, H. Huang, and J. Lu: Fabrication of nickel oxide-embedded titania nanotube array for redox capacitance application. Electrochim. Acta 53, 3643 (2008).

    Article  CAS  Google Scholar 

  13. S. Banerjee, S.K. Mohapatra, P.P. Das, and M. Misra: Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem. Mater. 20, 6784 (2008).

    Article  CAS  Google Scholar 

  14. J. Zhang, J.H. Bang, C.C. Tang, and P.V. Kamat: Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4, 387 (2010).

    Article  CAS  Google Scholar 

  15. A.I. Kontos, V. Likodimos, T. Stergiopoulos, D.S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, and P. Schmuki: Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles. Chem. Mater. 21, 662 (2009).

    Article  CAS  Google Scholar 

  16. Z.R. Hesabi, N.K. Allam, K. Dahmen, H. Garmestani, and M.A. El-Sayed: Self-standing crystalline TiO2 nanotubes/CNTs heterojunction membrane: Synthesis and characterization. ACS Appl. Mater. Interfaces 3, 952 (2011).

    Article  CAS  Google Scholar 

  17. J.M. Macak, B.G. Gong, M. Hueppe, and P. Schmuki: Filling of TiO2 nanotubes by self-doping and electrodeposition. Adv. Mater. 19, 3027 (2007).

    Article  CAS  Google Scholar 

  18. J.A. Seabold, K. Shankar, R.H.T. Wilke, M. Paulose, O.K. Varghese, C.A. Grimes, and K.S. Choi: Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chem. Mater. 20, 5266 (2008).

    Article  CAS  Google Scholar 

  19. D.A. Wang, Q.A. Ye, B. Yu, and F. Zhou: Towards chemically bonded p-n heterojunctions through surface initiated electrodeposition of p-type conducting polymer inside TiO2 nanotubes. J. Mater. Chem. 20, 6910 (2010).

    Article  CAS  Google Scholar 

  20. J.M. Macak, M. Zlamal, J. Krysa, and P. Schmuki: Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3, 300 (2007).

    Article  CAS  Google Scholar 

  21. P.R. Harvey, R. Rudham, and S. Ward: Photocatalytic oxidation of liquid alcohols and binary alcohol mixtures by rutile. J. Chem. Soc., Faraday Trans. 79, 2975 (1983).

    Article  CAS  Google Scholar 

  22. K. Ikeda, H. Sakai, R. Baba, K. Hashimoto, and A. Fujishima: Photocatalytic reactions involving radical chain reactions using microelectrodes. J. Phys. Chem. B 101, 2617 (1997).

    Article  CAS  Google Scholar 

  23. X.B. Chen, L. Liu, P.Y. Yu, and S.S. Mao: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).

    Article  CAS  Google Scholar 

  24. G. Liu, L.Z. Wang, H.G. Yang, H.M. Cheng, and G.Q. Lu: Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 20, 831 (2009).

    Article  Google Scholar 

  25. D. Zhang: Chemical synthesis of Ni/TiO2 nanophotocatalyst for UV/visible light assisted degradation of organic dye in aqueous solution. J. Sol-Gel Sci. Technol. 58, 312 (2011).

    Article  CAS  Google Scholar 

  26. R.J. Tayade, R.G. Kulkarni, and R.V. Jasra: Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water. Ind. Eng. Chem. Res. 45, 5231 (2006).

    Article  CAS  Google Scholar 

  27. H. Chen, S. Chen, X. Quan, H.T. Yu, H.M. Zhao, and Y.B. Zhang: Fabrication of TiO2-Pt coaxial nanotube array Schottky structures for enhanced photocatalytic degradation of phenol in aqueous solution. J. Phys. Chem. C 112, 9285 (2008).

    Article  CAS  Google Scholar 

  28. K.P. Xie, L. Sun, C.L. Wang, Y.K. Lai, M.Y. Wang, H.B. Chen, and C.J. Lin: Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochim. Acta 55, 7211 (2010).

    Article  CAS  Google Scholar 

  29. I. Paramasivam, J.M. Macak, and P. Schmuki: Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles. Electrochem. Commun. 10, 71 (2008).

    Article  CAS  Google Scholar 

  30. M.K. Seery, R. George, P. Floris, and S.C. Pillai: Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol., A 189, 258 (2007).

    Article  CAS  Google Scholar 

  31. N. Sobana, M. Muruganadham, and M. Swaminathan: Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes. J. Mol. Catal. A: Chem. 258, 124 (2006).

    Article  CAS  Google Scholar 

  32. A. Sclafani and J.M. Herrmann: Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media. J. Photochem. Photobiol., A 113, 181 (1998).

    Article  CAS  Google Scholar 

  33. V. Iliev, D. Tomova, L. Bilyarska, and L. Petrov: Photooxidation of xylenol orange in the presence of palladium-modified TiO2 catalysts. Catal. Commun. 5, 759 (2004).

    Article  CAS  Google Scholar 

  34. E. Moti, M.H. Shariat, and M.E. Bahrololoom: Electrodeposition of nanocrystalline nickel by using rotating cylindrical electrodes. Mater. Chem. Phys. 111, 469 (2008).

    Article  CAS  Google Scholar 

  35. C.X. Wang, L.W. Yin, L.Y. Zhang, and R. Gao: Ti/TiO2 nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. J. Phys. Chem. C 114, 4408 (2010).

    Article  CAS  Google Scholar 

  36. Y.H. Zhang, Y.N. Yang, P. Xiao, X.N. Zhang, L. Lu, and L. Li: Preparation of Ni nanoparticle-TiO2 nanotube composite by pulse electrodeposition. Mater. Lett. 63, 2429 (2009).

    Article  CAS  Google Scholar 

  37. H.T. Fang, M. Liu, D.W. Wang, T. Sun, D.S. Guan, F. Li, J.G. Zhou, T.K. Sham, and H.M. Cheng: Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Nanotechnology 20, 225701 (2009).

    Article  Google Scholar 

  38. J. Chen, D.F. Ollis, W.H. Rulkens, and H. Bruning: Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (II): Photocatalytic mechanisms. Water Res. 33, 669 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by City University of Hong Kong (Projects 9667056 and 7002741).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, F., Zhang, J., Zheng, L. et al. Selective electrodeposition of Ni into the intertubular voids of anodic TiO2 nanotubes for improved photocatalytic properties. Journal of Materials Research 28, 405–410 (2013). https://doi.org/10.1557/jmr.2012.380

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.380

Navigation