Skip to main content
Log in

Kinetically stable glassy phase formation in neodymium nickelate thin films as evidenced by Hall effect and electrical resistivity measurements

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, we are reporting the time- and temperature-dependence of the electrical resistivity and temperature-dependence of the Hall voltage in neodymium nickelate thin films. The films were deposited on a lanthanum aluminate substrate [LaAlO3 (001)] by a pulsed laser deposition technique, with thicknesses ranging from 0.6 to 120 nm. Time-dependent electrical transport measurements indicated the formation of a kinetically stable metallic glassy phase rather than a stable insulating phase on cooling below the transition temperature, TM-I. Comparisons of the low-temperature behavior with that of common insulators further supported this claim. Hall effect measurements on the 1.2-nm sample showed a local maximum in the carrier concentration just below the TM-I on both the heating and cooling cycles. This again confirmed the proposed low-temperature structure, in that, for the 1.2-nm sample, there was a minimal degree of supercooling before transitioning to a kinetically stable glassy phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.

Similar content being viewed by others

References

  1. H.J. Scheel and F. Licci: Crystal growth of YBa2Cu3O7-x. J. Cryst. Growth 85, 4 (1987).

    Article  Google Scholar 

  2. G. Catalan and J.F. Scott: Magnetoelectric coupling and multiferroic materials, in Multifunctional Oxide Heterostructures, 1st ed.; edited by E.Y. Tsymbal, R.A. Dagotto, C.B. Eom, and R. Ramesh (Oxford University Press, Oxford, UK, 2012), pp. 44, 46.

    Google Scholar 

  3. A.D. Rata, V. Kataev, D. Khomskii, and T. Hibma: Giant positive magnetoresistance in metallic VOx thin films. Phys. Rev. B 68, 22 (2003).

    Article  Google Scholar 

  4. S. Jin, M. McCormack, T.H. Tiefel, and R. Ramesh: Colossal magnetoresistance in La-Ca-Mn-O ferromagnetic thin films. J. Appl. Phys. 76, 10 (1994).

    Article  Google Scholar 

  5. A. Tiwari and K.P. Rajeev: Metal-insulator transition in La0.7Sr0.3Mn1-xFexO3. J. Appl. Phys. 86, 9 (1999).

    Article  Google Scholar 

  6. J.K. Vassiliou, M. Hornbostel, R. Ziebarth, and F.J. Disalvo: Synthesis and properties of NdNiO3 prepared by low-temperature methods. J. Solid State Chem. 81, 2 (1989).

    Article  Google Scholar 

  7. M. Medarde, A. Fontaine, J.L. Garcia-Munoz, J. Rodriguez-Carvaial, M. de Santis, M. Sacchi, G. Rossi, and P. Lacorre: RNiO3 perovskites (R=Pr, Nd): Nickel valence and the metal-insulator transition investigated by x-ray-absorption spectroscopy. Phys. Rev. B 46, 23 (1992).

    Article  Google Scholar 

  8. D. Adler and H. Brooks: Theory of semiconductor-to-metal transitions. Phys. Rev. 155, 3 (1967).

    Google Scholar 

  9. J.B. Torrance, P. Lacorre, A.I. Nazzal, E.J. Ansaldo, and C. Niedermayer: Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr, Nd, Sm, Eu) due to closing of the charge-transfer gap. Phys. Rev. B 45, 14 (1992).

    Article  Google Scholar 

  10. A.Y. Dobin, K.R. Nikolaev, I.N. Krivorotov, R.M. Wentzcovitch, E.D. Dahlberg, and A.M. Goldman: Electronic and crystal structure of fully strained LaNiO3 films. Phys. Rev. B 68, 11 (2003).

    Article  Google Scholar 

  11. J.L. Garcia-Munoz, J. Rodriguez-Carvajal, P. Lacorre, and J.B. Torrance: Neutron diffraction study of RNiO3 (R=La, Pr, Nd, Sm): Electronically induced structural changes across the metal-insulator transition. Phys. Rev. B 46, 8 (1992).

    Article  Google Scholar 

  12. P.H. Xiang, S. Asanuma, H. Yamada, I.H. Inoue, H. Akoh, and A. Sawa: Room temperature Mott metal-insulator transition and its systematic control in Sm1-xCaxNiO3 thin films. Appl. Phys. Lett. 97, 3 (2010).

    Google Scholar 

  13. M. Medarde, J. Mesot, S. Rosenkranz, P. Lacorre, W. Marshall, S. Klotz, J.S. Loveday, G. Hamel, S. Hull, and P. Radaelli: Pressure-induced orthorhombic-rhombohedral phase transition in NdNiO3. Physica B 234-236, 15–17 (1997).

    Article  CAS  Google Scholar 

  14. R. Mallik, E.V. Sampathkumaran, J.A. Alonso, and M.J. Martinez-Lope: Complex low-temperature transport behaviour of RNiO3-type compounds. J. Phys. Condens. Matter 10, 18 (1998).

    Article  Google Scholar 

  15. X. Granados, J. Fontcuberta, X. Obradors, L. Manosa, and J.B. Torrance: Metallic state and the metal-insulator transition of NdNiO3. Phys. Rev. B 48, 16 (1993).

    Article  Google Scholar 

  16. D. Kaur, J. Jesudasan, and P. Raychaudhuri: Pulsed laser deposition of NdNiO3 thin films. Solid State Commun. 136, 6 (2005).

    Article  Google Scholar 

  17. D. Kumar, K.P. Rajeev, A.K. Kushwaha, and R.C. Budhani: Heterogeneous nucleation and metal-insulator transition in epitaxial films of NdNiO3. J. Appl. Phys. 108, 6 (2010).

    Google Scholar 

  18. A. Tiwari, J. Narayan, C. Jin, and A. Kvit: Growth of epitaxial NdNiO3 and integration with Si(100). Appl. Phys. Lett. 80, 8 (2002).

    Google Scholar 

  19. R. Scherwitzl, P. Zubko, I.G. Lezama, S. Ono, A.F. Morpurgo, G. Catalan, and J.M. Triscone: Electric-field control of the metal-insulator transition in ultrathin NdNiO3 films. Adv. Mater. 22, 48 (2010).

    Article  Google Scholar 

  20. J. Liu, M. Kareev, B. Gray, J.W. Kim, P. Ryan, B. Dabrowski, J.W. Freeland, and J. Chakhalian: Strain-mediated metal-insulator transition in epitaxial ultrathin films of NdNiO3. Appl. Phys. Lett. 96, 23 (2010).

    Google Scholar 

  21. G. Catalan, R.M. Bowman, and J.M. Gregg: Metal-insulator transition in NdNiO3 thin films. Phys. Rev. B 62, 12 (2000).

    Article  Google Scholar 

  22. J. Blasco, M. Castro, and J. Garcia: Structural, electronic, magnetic and calorimetric study of the metal-insulator transition in NdNiO3. J. Phys. Condens. Matter 6, 30 (1994).

    Google Scholar 

  23. J.E. Lorenzo, J.L. Hodeau, L. Paolasini, S. Lefloch, J.A. Alonso, and G. Demazeau: Resonant x-ray scattering experiments on electronic orderings in NdNiO3 single crystals. Phys. Rev. B 71, 4 (2005).

    Article  Google Scholar 

  24. A. Venimadhav, I.C. Lekshmi, and M.S. Hegde: Strain-induced metallic behavior in PrNiO3 epitaxial thin films. Mater. Res. Bull. 37, 2 (2002).

    Article  Google Scholar 

  25. H. Mughrabi: Dislocation clustering and long-range internal stresses in monotonically and cyclically deformed metal crystals. Rev. Phys. Appl. 23, 4 (1988).

    Article  Google Scholar 

  26. D. Kumar, K.P. Rajeev, J.A. Alonso, and M.J. Martinez-Lope: Evidence of kinetically arrested supercooled phases in the perovskite oxide NdNiO3. J. Phys. Condens. Matter 21, 48 (2009).

    Google Scholar 

  27. D. Kumar, K.P. Rajeev, J.A. Alonso, and M.J. Martinez-Lope: Slow dynamics in hard condensed matter: A case study of the phase separating system NdNiO3. J. Phys. Condens. Matter 21, 18 (2009).

    Google Scholar 

  28. J.S. Zhou, J.B. Goodenough, B. Dabrowski, P.W. Klamut, and Z. Bukowski: Probing the metal-insulator transition in Ni(III)-oxide perovskites. Phys. Rev. B 61, 7 (2000).

    Google Scholar 

Download references

Acknowledgment

Financial support from the National Science Foundation (NSF) through Award Nos. DMR-0746486 and DMR-1121252 is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Tiwari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prestgard, M.C., Tiwari, A. Kinetically stable glassy phase formation in neodymium nickelate thin films as evidenced by Hall effect and electrical resistivity measurements. Journal of Materials Research 28, 1699–1706 (2013). https://doi.org/10.1557/jmr.2013.35

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.35

Navigation