Skip to main content
Log in

Effect of pressure on crystal structure and charge transport properties of 2,6-diphenylanthracene

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influence of hydrostatic compression on the charge transport properties of an excellent 2,6-diphenylanthracene (2,6-DPA) semiconducting single crystal was investigated up to 10 GPa by performing density-functional calculations together with the tight binding approximation. In this pressure region the lattice constants a, b and c decrease by up to 0.948 Å (5.23%), 1.30 Å (17.26%), and 0.711 Å (11.34%), respectively, while the monoclinic angle β increases by 3.4°. The unit-cell volume decreases by increasing pressure, and the volume decreases by 30.5% at 10 GPa. In comparison, the C–C and C–H intermolecular distances within and between the herringbone layers reduced by 16–19% and 16–24%, respectively, in the same pressure ranges. The results indicate that under high pressure, the molecular planes of the crystal become more and more parallel to each other due to molecular rearrangement in the 2,6-DPA crystal. The band gap decreases with increasing pressure due to decreasing intermolecular separation between neighboring molecules. Finally, the results indicate an improvement of the hole mobility of 2,6-DPA single crystals under hydrostatic pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. M. Pope and H. Kallman: Electroluminescence in organic crystals. J. Chem. Phys. 38, 2042 (1963).

    CAS  Google Scholar 

  2. F. Wurthner: Plastic transistors reach maturity for mass applications in microelectronics. Angew. Chem., Int. Ed. 40, 1037 (2001).

    CAS  Google Scholar 

  3. V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, and J-L. Bredas: Charge transport in organic semiconductors. Chem. Rev. 107, 926 (2007).

    CAS  Google Scholar 

  4. L. Wang, D. Fine, D. Basu, and A. Dodabalapur: Electric-field-dependent charge transport in organic thin-film transistors. J. Appl. Phys. 101, 054515 (2007).

    Google Scholar 

  5. W. Warta and N. Karl: Hot holes in naphthalene: High, electric-field-dependent mobilities. Phys. Rev. B: Condens. Matter Mater. Phys. 32, 1172 (1985).

    CAS  Google Scholar 

  6. R.G. Kepler and D.C. Hoesterey: High-field mobility in anthracene crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 9, 2743 (1974).

    CAS  Google Scholar 

  7. L.B. Schein and A.R. McGhie: Electric field independent mobilities in molecular crystals. Chem. Phys. Lett. 62, 356 (1979).

    CAS  Google Scholar 

  8. S. Nakano and Y. Maruyama: Electric-field dependent electron mobility in anthracene single crystals. Solid State Commun. 35, 671 (1980).

    CAS  Google Scholar 

  9. L.B. Schein, R.S. Narang, R.W. Anderson, K.E. Meyer, and A.R. McGhie: Electric-field-independent electron mobilities in anthracene. Chem. Phys. Lett. 100, 37 (1983).

    CAS  Google Scholar 

  10. J. Takeya, J. Kato, K. Hara, M. Yamagishi, R. Hirahara, K. Yamada, Y. Nakazawa, S. Ikehata, K. Tsukagoshi, Y. Aoyagi, T. Takenobu, and Y. Iwasa: In-crystal and surface charge transport of electric-field-induced carriers in organic single-crystal semiconductors. Phys. Rev. Lett. 98, 196804 (2007).

    CAS  Google Scholar 

  11. J.C. Sancho-Garcia, G. Horowitz, J-L. Brédas, J. Cornil: Effect of an external electric field on the charge transport parameters in organic molecular semiconductors. J. Chem. Phys. 119, 12563 (2003).

    CAS  Google Scholar 

  12. Y. Olivier, V. Lemaur, J-L. Brédas, and J. Cornil: Charge hopping in organic Semiconductors: Influence of molecular parameters on macroscopic mobilities in model one-dimensional stacks. J. Phys. Chem. A 110, 6356 (2006).

    CAS  Google Scholar 

  13. M. Hultell and S. Stafström: Polaron dynamics in highly ordered molecular crystals. Chem. Phys. Lett. 428, 446 (2006).

    CAS  Google Scholar 

  14. T. Kajiwara, H. Inokuchi, and S. Minomura: Charge mobility of organic semiconductors under high pressure. Anthracene. Bull. Chem. Soc. Jpn. 3, 1055 (1967).

    Google Scholar 

  15. Y. Harada, Y. Maruyama, I. Shirotani, and H. Inokuchi: Electrical conductivity of organic semiconductors at high pressure. Bull. Chem. Soc. Jpn. 37, 1378 (1964).

    CAS  Google Scholar 

  16. A. Shirotani, H. Inokuchi, and S. Minomura: Electrical conduction of organic semiconductors under high pressure. Bull. Chem. Soc. Jpn. 39, 386 (1966).

    CAS  Google Scholar 

  17. Z. Rang, A. Haraldsson, D.M. Kim, P.P. Ruden, M.I. Nathan, R.J. Chesterfield, and C.D. Frisbie: Hydrostatic-pressure dependence of the photoconductivity of single-crystal pentacene and tetracene. Appl. Phys. Lett. 79, 2731 (2001).

    CAS  Google Scholar 

  18. Z. Rang, M.I. Nathan, P.P. Ruden, V. Podzorov, M.E. Gershenson, C.R. Newman, and C.D. Frisbie: Hydrostatic pressure dependence of charge carrier transport in single-crystal rubrene devices. Appl. Phys. Lett. 86, 123501 (2005).

    Google Scholar 

  19. Z. Rang, M.I. Nathan, P.P. Ruden, R. Chesterfield, and C.D. Frisbie: Hydrostatic-pressure dependence of organic thin-film transistor current versus voltage characteristics. Appl. Phys. Lett. 85, 5760 (2004).

    CAS  Google Scholar 

  20. L.J. Wang, Q.K. Li, and Z. Shuai: Effects of pressure and temperature on the carrier transports in organic crystal: A first-principles study. J. Chem. Phys. 128, 194706 (2008).

    CAS  Google Scholar 

  21. K. Sakai, Y. Okada, S. Kitaoka, J. Tsurumi, Y. Ohishi, A. Fujiwara, K. Takimiya, and J. Takeya: Anomalous pressure effect in heteroacene organic field-effect transistors. Phys. Rev. Lett. 110, 096603 (2013).

    CAS  Google Scholar 

  22. Y. Okada, K. Sakai, T. Uemura, Y. Nakazawa, and J. Takeya: Charge transport and Hall effect in rubrene single-crystal transistors under high pressure. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 245308 (2011).

    Google Scholar 

  23. G.W. Bauman, S. Parsons, J. Serwatowski, and K. Woźniak: Effect of high pressure on the crystal structure and charge transport properties of the (2-fluoro-3-pyridyl)(4-Iodophenyl)borinic 8-oxyquinolinate complex. CrystEngComm 16, 10780 (2014).

    Google Scholar 

  24. N. Karl: Charge carrier transport in organic semiconductors. Synth. Met. 133, 649 (2003).

    Google Scholar 

  25. V. Podzorov, V.M. Pudalov, and M.E. Gershenson: Field-effect transistors on rubrene single crystals with parylene gate insulator. Appl. Phys. Lett. 82, 1739 (2003).

    CAS  Google Scholar 

  26. Y. Shirota: Photo- and electroactive amorphous molecular materials—Molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem. 15, 75–93 (2005).

    CAS  Google Scholar 

  27. T. Kreouzis, D. Poplavskyy, S.M. Tuladhar, M. Campoy-Quiles, J. Nelson, A.J. Campbell, and D.D.C. Bradley: Temperature and field dependence of hole mobility in poly(9,9-dioctylfluorene). Phys. Rev. B: Condens. Matter Mater. Phys. 73, 235201 (2006).

    Google Scholar 

  28. X. Guo, A. Facchetti, and T.J. Marks: Imide- and amide-functionalized polymer semiconductors. Chem. Rev. 114, 8943 (2014).

    CAS  Google Scholar 

  29. M.E. Cinar and T. Ozturk: Thienothiophenes, dithienothiophenes, and thienoacenes: Syntheses, oligomers, polymers, and properties. Chem. Rev. 115, 3036 (2015).

    CAS  Google Scholar 

  30. H. Meng, F. Sun, M.B. Goldfinger, G.D. Jaycox, Z. Li, W.J. Marshall, and G.S. Blackman: High-performance: Stable organic thin-film field-effect transistors based on bis-5′-alkylthiophen-2′-yl-2,6-anthracene semiconductors. J. Am. Chem. Soc. 127, 2406 (2005).

    CAS  Google Scholar 

  31. I.V. Kukhta, I.N. Kukhta, N.A. Kukhta, O.L. Neyra, and E. Meza: DFT study of the electronic structure of anthracene derivatives in their neutral, anion and cation forms. J. Phys. B: At., Mol. Opt. Phys. 41, 205701 (2008).

    Google Scholar 

  32. W.Q. Deng and W.A. Goddard, III: Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations. J. Phys. Chem. B 108, 8614 (2004).

    CAS  Google Scholar 

  33. S. Ando, J-I. Nishida, E. Fujiwara, H. Tada, Y. Inoue, S. Tokito, and Y. Yamashita: Novel p- and n-type organic semiconductors with an anthracene unit. Chem. Mater. 17, 1261 (2005).

    CAS  Google Scholar 

  34. H. Meng, F. Sun, M.B. Goldfinger, F. Gao, D.J. Londono, W.J. Marshal, G.S. Blackman, K.D. Dobbs, and D.E. Keys: 2,6-Bis[2-(4-pentylphenyl)vinyl]anthracene: A stable and high charge mobility organic semiconductor with densely packed crystal structure. J. Am. Chem. Soc. 128, 9304 (2006).

    CAS  Google Scholar 

  35. L. Jiang, W. Hu, and Z. Wei: High-performance organic single-crystal transistors and digital inverters of an anthracene derivative. Adv. Mater. 21, 3649 (2009).

    CAS  Google Scholar 

  36. J. Liu, H. Dong, Z. Wang, D. Ji, C. Cheng, H. Geng, H. Zhang, Y. Zhen, L. Jiang, H. Fu, Z. Bo, W. Chen, Z. Shuai, and W. Hu: Thin film field-effect transistors of 2,6-diphenyl anthracene (DPA). Chem. Commun. 51, 11777 (2015).

    CAS  Google Scholar 

  37. J. Liu, H. Zhang, H. Dong, L. Meng, L. Jiang, L. Jiang, Y. Wang, J. Yu, Y. Sun, W. Hu, and A.J. Heeger: High mobility emissive organic semiconductor. Nat. Commun. 6, 10032 (2015).

    CAS  Google Scholar 

  38. N. Ueno: Electronic structure of molecular solids: Bridge to the electrical conduction. In Physics of Organic Semiconductors, 2nd ed., W. Brütting and C. Adachi eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012.

    Google Scholar 

  39. S.A. Elnahwy, M. El Hamamsy, and A.C. Damask: Calculation of the effects of pressure on the band structure, drift, and Hall mobilities of an excess electron and an excess hole in anthracene. Phys. Rev. B: Condens. Matter Mater. Phys. 19, 1108 (1979).

    CAS  Google Scholar 

  40. A. Marciniak, V. Despré, T. Barillot, A. Rouzée, M.C.E. Galbraith, J. Klei, C.H. Yang, C.T.L. Smeenk, V. Loriot, S. Nagaprasad Reddy, A.G.G.M. Tielens, S. Mahapatra, A.I. Kuleff, M.J.J. Vrakking, and F. Lépine: XUV excitation followed by ultrafast non-adiabatic relaxation in PAH molecules as a femto-astrochemistry experiment. Nat. Commun. 6, 7909 (2015).

    CAS  Google Scholar 

  41. D. Vanderbilt: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B: Condens. Matter Mater. Phys. 41, 7892 (1990).

    CAS  Google Scholar 

  42. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne: First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005).

    CAS  Google Scholar 

  43. Accelrys Inc.: Materials Studio, 5.5 V (Accelrys Inc., San Diego, CA, 2008).

    Google Scholar 

  44. G. Kresse and J. Furthmuller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11169 (1996).

    CAS  Google Scholar 

  45. T.H. Fischer and J. Almlof: General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768 (1992).

    CAS  Google Scholar 

  46. J.P. Perdew, K. Burke, and K. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Google Scholar 

  47. J.C. Sancho-Garcia, A.J. Perez-Jimenez, Y. Olivier, and J. Cornil: Molecular packing and charge transport parameters in crystalline organic semiconductors from first-principles calculations. Phys. Chem. Chem. Phys. 12, 9381 (2010).

    CAS  Google Scholar 

  48. W.F. Perger: Calculation of band gaps in molecular crystals using hybrid functional theory. Chem. Phys. Lett. 368, 319 (2003).

    CAS  Google Scholar 

  49. A. Troisi and G. Orlandi: The hole transfer in DNA: Calculation of electron coupling between close bases. Chem. Phys. Lett. 344, 509 (2001).

    CAS  Google Scholar 

  50. G. Nan and Z. Li: Phase dependence of hole mobilities in dibenzo-tetrathiafulvalene crystal: A first-principles study. Org. Electron. 13, 1229 (2012).

    CAS  Google Scholar 

  51. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox: Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, CT, 2009).

    Google Scholar 

  52. J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B: Condens. Matter Mater. Phys. 45, 13244 (1992).

    CAS  Google Scholar 

  53. A.L. Goodwin: Organic crystals: Packing down. Nat. Mater. 9, 7 (2010).

    CAS  Google Scholar 

  54. M.I. Aroyo, A. Kirov, C. Capillas, J.M. Perez-Mato, and H. Wondratschek: Bilbao crystallographic server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr., Sect. A: Found. Crystallogr. 62, 115 (2006).

    Google Scholar 

  55. Q.W. Huang, J. Zhang, A. Berlie, Z.X. Qin, X.M. Zhao, J.B. Zhang, L-Y. Tang, J. Liu, C. Zhang, G.H. Zhong, H.Q. Lin, and X.J. Chen: Structural and vibrational properties of phenanthrene under pressure. J. Chem. Phys. 139, 104302 (2013).

    Google Scholar 

  56. M. Oehzelt, G. Heimel, R. Resel, P. Puschnig, K. Hummer, C.A. Draxl, K. Takemura, and A. Nakayama: High pressure x-ray study on anthracene. J. Chem. Phys. 119, 1078 (2003).

    CAS  Google Scholar 

  57. M. Oehzelt and R. Resel: High-pressure structural properties of anthracene up to 10 GPa. Phys. Rev. B: Condens. Matter Mater. Phys. 66, 174104 (2002).

    Google Scholar 

  58. J.J. McKinnon, D. Jayatilaka, and M.A. Spackman: Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun., 37, 3814 (2007).

    Google Scholar 

  59. M.E. Gershenson, V. Podzorov, and A.F. Morpurgo: Colloquium: Electronic transport in single-crystal organic transistors. Rev. Mod. Phys. 78, 973 (2006).

    CAS  Google Scholar 

  60. G. Koller, S. Berkebile, M. Oehzelt, P. Puschnig, C.A. Draxl, F.P. Netzer, and M.G. Ramsey: Intra- and intermolecular band dispersion in an organic crystal. Science 317, 351 (2007).

    CAS  Google Scholar 

  61. F. Ortmann, K. Hannewald, and F. Bechstedt: Ab initio studies of structural, vibrational, and electronic properties of durene crystals and molecules. Phys. Rev. B: Condens. Matter Mater. Phys. 75, 195219 (2007).

    Google Scholar 

  62. A. Troisi and G. Orlandi: Charge-transport regime of crystalline organic semiconductors: Diffusion limited by thermal off-diagonal electronic disorder. Phys. Rev. Lett. 96, 086601 (2006).

    Google Scholar 

  63. K. Hannewald, V.M. Stojanovic, J.M.T. Schellekens, P.A. Bobbert, G. Kresse, and J. Hafner: Theory of polaron bandwidth narrowing in organic molecular crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 69, 075211 (2004).

    Google Scholar 

  64. Y.C. Cheng and R.J. Silbey: A unified theory for charge-carrier transport in organic crystal. J. Chem. Phys. 128, 114713 (2008).

    Google Scholar 

  65. E.F. Valeev, V. Coropceanu, D.A. da Silva Filho, S. Salman, and J-L. Bredas: Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. J. Am. Chem. Soc. 128, 9882 (2006).

    CAS  Google Scholar 

  66. T. Yanai, D.P. Tew, and N.C. Handy: A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51 (2004).

    CAS  Google Scholar 

  67. R.C. Haddon, T. Siegrist, R.M. Fleming, P.M. Bridenbaugh, and R.A. Laudise: Band structures of organic thin-film transistor materials. J. Mater. Chem. 5, 1719 (1995).

    CAS  Google Scholar 

  68. J.S. Huang and M. Kertesz: Validation of intermolecular transfer integral and bandwidth calculations for organic molecular materials. J. Chem. Phys. 122, 234707 (2005).

    Google Scholar 

  69. Y.A. Duan, H.B. Li, Y. Geng, Y. Wu, G.Y. Wang, and Z.M. Su: Theoretical studies on the hole transport property of tetrathienoarene derivatives: The influence of the position of sulfur atom, substituent and π-conjugated core. Org. Electron. 15, 602 (2014).

    CAS  Google Scholar 

  70. G.A. de Wijs, C.C. Mattheus, R.A. de Groot, and T.T.M. Palstra: Anisotropy of the mobility of pentacene from frustration. Synth. Met. 139, 109 (2003).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful for the financial support from the National Science Foundation of China (No. 21372116) and the Project Funded by China Postdoctoral Science Foundation (No. 2015M581802) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Hai Ju.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaitanya, K., Ju, XH. Effect of pressure on crystal structure and charge transport properties of 2,6-diphenylanthracene. Journal of Materials Research 31, 3731–3744 (2016). https://doi.org/10.1557/jmr.2016.435

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.435

Navigation