Skip to main content
Log in

Rheological properties of HDPE/chitosan composites modified with PE-g-MA

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The rheological behavior of composites made with high-density polyethylene (HDPE) and chitosan was studied. Composites were prepared by melt processing in a laboratory internal mixer. Maleic anhydride grafted HDPE (PE-g-MA) was used as compatibilizer to enhance the dispersion of chitosan in the HDPE matrix. Different percentages of chitosan and compatibilizer (up to a maximum of 25 phr) were added into HDPE to prepare composites. Characterization of the composites with parallel plate rheometer and laboratory internal mixer revealed that the presence of chitosan increases the complex viscosity, loss modulus, storage modulus and the torque (i.e., melt viscosity), and the combination chitosan/compatibilizer has a similar, if slighter, effect. At higher filler levels it is clear that the PE-g-MA affected the microstructure of the compounds, possibly increasing matrix–filler interactions and acting as an effective compatibilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. A. Peacock: Handbook of Polyethylene: Structures: Properties, and Applications (CRC Press, New York, 2000).

    Book  Google Scholar 

  2. C. Vasile and M. Pascu: Practical Guide to Polyethylene (Rapra Technology Limited, Shawbury, 2005).

    Google Scholar 

  3. D.B. Malpass: Introduction to Industrial Polyethylene: Properties, Catalysts, and Processes (John Wiley & Sons, Hoboken, 2010).

    Book  Google Scholar 

  4. S. Bonhomme, A. Cuer, A. Delort, J. Lemaire, M. Sancelme, and G. Scott: Environmental biodegradation of polyethylene. Polym. Degrad. Stab. 81 (3), 441 (2003).

    Article  CAS  Google Scholar 

  5. G. Scott: Polymers and the Environment (Royal Society of Chemistry, Cambridge, 1999).

    Google Scholar 

  6. G. Swift and D. Wiles: Biodegradable and degradable polymers and plastics in landfill sites. In Encyclopedia of Polymer Science and Technology, J.I. Kroschwitz, ed. (John Wiley & Sons., Hoboken, 2004).

    Google Scholar 

  7. M. Sudhakar, M. Doble, P.S. Murthy, and R. Venkatesan: Marine microbe-mediated biodegradation of low-and high-density polyethylenes. Int. Biodeterior. Biodegrad. 61 (3), 203 (2008).

    Article  CAS  Google Scholar 

  8. T. Ojeda, A. Freitas, K. Birck, E. Dalmolin, R. Jacques, F. Bento, and F. Camargo: Degradability of linear polyolefins under natural weathering. Polym. Degrad. Stab. 96 (4), 703 (2011).

    Article  CAS  Google Scholar 

  9. R.A. Gross and B. Kalra: Biodegradable polymers for the environment. Science 297 (5582), 803 (2002).

    Article  CAS  Google Scholar 

  10. Y.V. Kissin: Polyethylene: End-use Properties and Their Physical Meaning (Carl Hanser Verlag GmbH Co KG, Cincinnati, 2012).

    Book  Google Scholar 

  11. M. Tolinski: Additives for Polyolefins: Getting the Most Out of Polypropylene, Polyethylene and TPO (William Andrew, Oxford, 2015).

    Google Scholar 

  12. S. Husseinsyah, A.N. Azmin, and H. Ismail: Effect of maleic anhydride-grafted-polyethylene (MAPE) and silane on properties of recycled polyethylene/chitosan biocomposites. Polym.-Plast. Technol. Eng. 52 (2), 168 (2013).

    Article  CAS  Google Scholar 

  13. Y. Orhan, J. Hrenovic, and H. Buyukgungor: Biodegradation of plastic compost bags under controlled soil conditions. Acta Chim. Slov. 51 (3), 579 (2004).

    CAS  Google Scholar 

  14. S.Z. Rogovina, K.V. Aleksanyan, D.D. Novikov, E.V. Prut, and A.V. Rebrov: Synthesis and investigation of polyethylene blends with natural polysaccharides and their derivatives. Polym. Sci., Ser. A 51 (5), 554 (2009).

    Article  Google Scholar 

  15. S.Z. Rogovina, C.V. Alexanyan, and E.V. Prut: Biodegradable blends based on chitin and chitosan: Production, structure, and properties. J. Appl. Polym. Sci. 121 (3), 1850 (2011).

    Article  CAS  Google Scholar 

  16. H. Ismail, S.M. Shaari, and N. Othman: The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidised natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds. Polym. Test. 30 (7), 784 (2011).

    Article  CAS  Google Scholar 

  17. V. Correlo, L. Boesel, M. Bhattacharya, J. Mano, N. Neves, and R. Reis: Properties of melt processed chitosan and aliphatic polyester blends. Mater. Sci. Eng., A 403 (1), 57 (2005).

    Article  CAS  Google Scholar 

  18. O. Ermolovich and A. Makarevich: Effect of compatibilizer additives on the technological and performance characteristics of biodegradable materials based on starch-filled polyethylene. Russ. J. Appl. Chem. 79 (9), 1526 (2006).

    Article  CAS  Google Scholar 

  19. D. Raghavan and A. Emekalam: Characterization of starch/polyethylene and starch/polyethylene/poly (lactic acid) composites. Polym. Degrad. Stab. 72 (3), 509 (2001).

    Article  CAS  Google Scholar 

  20. C-S. Wu: A comparison of the structure, thermal properties, and biodegradability of polycaprolactone/chitosan and acrylic acid grafted polycaprolactone/chitosan. Polymer 46 (1), 147 (2005).

    Article  CAS  Google Scholar 

  21. S. Husseinsyah, F. Amri, K. Husin, and H. Ismail: Mechanical and thermal properties of chitosan-filled polypropylene composites: The effect of acrylic acid. J. Vinyl Addit. Technol. 17 (2), 125 (2011).

    Article  CAS  Google Scholar 

  22. H. Salmah, A. Faisal, and H. Kamarudin: Chemical modification of chitosan-filled polypropylene (PP) composites: The effect of 3-aminopropyltriethoxysilane on mechanical and thermal properties. Int. J. Polym. Mater. 60 (7), 429 (2011).

    Article  CAS  Google Scholar 

  23. H. Salmah, F. Amri, and H. Kamarudin: Properties of chitosan-filled polypropylene (PP) composites: The effect of acetic acid. Polym.-Plast. Technol. Eng. 51 (1), 86 (2012).

    Article  CAS  Google Scholar 

  24. F. Amri, S. Husseinsyah, and K. Hussin: Mechanical, morphological and thermal properties of chitosan filled polypropylene composites: The effect of binary modifying agents. Composites, Part A 46, 89 (2013).

    Article  CAS  Google Scholar 

  25. O. Agboh and Y. Qin: Chitin and chitosan fibers. Polym. Adv. Technol. 8 (6), 355 (1997).

    Article  CAS  Google Scholar 

  26. K. Chang, Y-S. Lin, and R. Chen: The effect of chitosan on the gel properties of tofu (soybean curd). J. Food Eng. 57 (4), 315 (2003).

    Article  Google Scholar 

  27. P. Dutta, S. Tripathi, G. Mehrotra, and J. Dutta: Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 114 (4), 1173 (2009).

    Article  CAS  Google Scholar 

  28. B. Krajewska: Application of chitin-and chitosan-based materials for enzyme immobilizations: A review. Enzyme Microb. Technol. 35 (2), 126 (2004).

    Article  CAS  Google Scholar 

  29. M.G. Peter: Applications and environmental aspects of chitin and chitosan. J. Macromol. Sci., Part A: Pure Appl. Chem. 32 (4), 629 (1995).

    Article  Google Scholar 

  30. C. Pillai, W. Paul, and C.P. Sharma: Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 34 (7), 641 (2009).

    Article  CAS  Google Scholar 

  31. K.H. Prashanth and R. Tharanathan: Chitin/chitosan: Modifications and their unlimited application potential—An overview. Trends Food Sci. Technol. 18 (3), 117 (2007).

    Article  CAS  Google Scholar 

  32. E.I. Rabea, M.E.-T. Badawy, C.V. Stevens, G. Smagghe, and W. Steurbaut: Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 4 (6), 1457 (2003).

    Article  CAS  Google Scholar 

  33. S.A. Agnihotri, N.N. Mallikarjuna, and T.M. Aminabhavi: Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J. Controlled Release 100 (1), 5 (2004).

    Article  CAS  Google Scholar 

  34. J-K.F. Suh and H.W. Matthew: Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials 21 (24), 2589 (2000).

    Article  CAS  Google Scholar 

  35. K.V. Reesha, S.K. Panda, J. Bindu, and T.O. Varghese: Development and characterization of an LDPE/chitosan composite antimicrobial film for chilled fish storage. Int. J. Biol. Macromol. 79, 934 (2015).

    Article  CAS  Google Scholar 

  36. S. Khoramnejadian: Kinetic study of biodegradation of linear low density polyethylene/chitosan. Adv. Environ. Biol., 5 (10), 3050 (2011).

    CAS  Google Scholar 

  37. A. Martínez-Camacho, M. Cortez-Rocha, A. Graciano-Verdugo, F. Rodríguez-Félix, M. Castillo-Ortega, A. Burgos-Hernández, J. Ezquerra-Brauer, and M. Plascencia-Jatomea: Extruded films of blended chitosan, low density polyethylene and ethylene acrylic acid. Carbohydr. Polym. 91 (2), 666 (2013).

    Article  CAS  Google Scholar 

  38. S. Mir, T. Yasin, P.J. Halley, H.M. Siddiqi, and T. Nicholson: Thermal, rheological, mechanical and morphological behavior of HDPE/chitosan blend. Carbohydr. Polym. 83 (2), 414 (2011).

    Article  CAS  Google Scholar 

  39. A.O. Ogah, J.N. Afiukwa, and A.A. Nduji: Characterization and comparison of rheological properties of agro fiber filled high-density polyethylene bio-composites. Open J. Polym. Chem. 04 (01), 12 (2014).

    Article  CAS  Google Scholar 

  40. S.I. Park, K.S. Marsh, and P. Dawson: Application of chitosan-incorporated LDPE film to sliced fresh red meats for shelf life extension. Meat Sci. 85 (3), 493 (2010).

    Article  CAS  Google Scholar 

  41. J. Quiroz-Castillo, D. Rodríguez-Félix, H. Grijalva-Monteverde, T. del Castillo-Castro, M. Plascencia-Jatomea, F. Rodríguez-Félix, and P. Herrera-Franco: Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride. Carbohydr. Polym. 101, 1094 (2014).

    Article  CAS  Google Scholar 

  42. D.E. Rodríguez-Félix, J.M. Quiroz-Castillo, H. Grijalva-Monteverde, T. Castillo-Castro, S.E. Burruel-Ibarra, F. Rodríguez-Félix, T. Madera-Santana, R.E. Cabanillas, and P.J. Herrera-Franco: Degradability of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride under natural weathering. J. Appl. Polym. Sci. 131 (22), 41045 (2014).

    Article  CAS  Google Scholar 

  43. H. Salmah and A.N. Azieyanti: Properties of recycled polyethylene/chitosan composites: The effect of polyethylene-graft-maleic anhydride. J. Reinf. Plast. Compos. 30 (3), 195 (2010).

    Article  CAS  Google Scholar 

  44. M. Sunilkumar, T. Francis, E.T. Thachil, and A. Sujith: Low density polyethylene–chitosan composites: A study based on biodegradation. Chem. Eng. J. 204–206, 114 (2012).

    Article  CAS  Google Scholar 

  45. M. Sunilkumar, A.A. Gafoor, A. Anas, A.P. Haseena, and A. Sujith: Dielectric properties: A gateway to antibacterial assay—A case study of low-density polyethylene/chitosan composite films. Polym. J. 46 (7), 422 (2014).

    Article  CAS  Google Scholar 

  46. C. Vasile, R. Darie, A. Sdrobiş, E. Paslaru, G. Pricope, A. Baklavaridis, S. Munteanu, and I. Zuburtikudis: Effectiveness of chitosan as antimicrobial agent in LDPE/CS composite films as minced poultry meat packaging materials. Cellul. Chem. Technol. 48 (3–4), 325 (2014).

    CAS  Google Scholar 

  47. C. Vasile, R.N. Darie, C.N. Cheaburu-Yilmaz, G-M. Pricope, M. Bračič, D. Pamfil, G.E. Hitruc, and D. Duraccio: Low density polyethylene–chitosan composites. Composites, Part B 55, 314 (2013).

    Article  CAS  Google Scholar 

  48. H-s. Wang, D. Chen, and C-z. Chuai: Mechanical and barrier properties of LLDPE/chitosan blown films for packaging. Packag. Technol. Sci. 28 (10), 915 (2015).

    Article  CAS  Google Scholar 

  49. H.Z. Zhang, Z.C. He, G.H. Liu, and Y.Z. Qiao: Properties of different chitosan/low-density polyethylene antibacterial plastics. J. Appl. Polym. Sci. 113 (3), 2018 (2009).

    Article  CAS  Google Scholar 

  50. P.S. Lima, C.F. Guedes, D.L.A.C.S. Andrade, E.L. Canedo, and S.M.L. Silva: High density polyethylene/chitosan compounds: Effect of load level on thermal and mechanical properties. In 2nd Brazilian Conference on Composite Materials—BCCM2 (São José dos Campos, 2014).

  51. Braskem: High Density Polyethylene JV-060U Technical Data Sheet, Revision 8 (São Paulo, 2015).

  52. D. Walsh and P. Zoller: Standard Pressure Volume Temperature Data for Polymers (CRC Press, Lancaster, 1995).

    Google Scholar 

  53. T. Yui, K. Imada, K. Okuyama, Y. Obata, K. Suzuki, and K. Ogawa: Molecular and crystal structure of the anhydrous form of chitosan. Macromolecules 27 (26), 7601 (1994).

    Article  CAS  Google Scholar 

  54. J. Li, J. Revol, E. Naranjo, and R. Marchessault: Effect of electrostatic interaction on phase separation behaviour of chitin crystallite suspensions. Int. J. Biol. Macromol. 18 (3), 177 (1996).

    Article  CAS  Google Scholar 

  55. C.P.F. Santos and S.L.A. Dantas: Avaliação de uma amostra de quitosana comercial para uso no tratamento de efluentes têxteis. Presented at the 48th Brazilian Chemistry Meeting (Rio de Janeiro, 2008).

  56. Addivant: Polybond 3009 Technical Information [www.addivant.com] (Danbury, 2013).

  57. H. Moussout, H. Ahlafi, M. Aazza, and M. Bourakhouadar: Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polym. Degrad. Stab. 130, 1 (2016).

    Article  CAS  Google Scholar 

  58. W. Cox and E. Merz: Correlation of dynamic and steady-flow viscosities. J. Polym. Sci., Part A-2: Polym. Phys. 28, 619 (1958).

    CAS  Google Scholar 

  59. J.M. Dealy and R.G. Larson: Structure and Rheology of Molten Polymers (Hanser Publishers, Munich, 2006).

    Book  Google Scholar 

  60. H.H. Winter: Three views of viscoelasticity for Cox–Merz materials. Rheol. Acta 48 (3), 241 (2009).

    Article  CAS  Google Scholar 

  61. W. Gleissle and B. Hochstein: Validity of the Cox–Merz rule for concentrated suspensions. J. Rheol. 47 (4), 897 (2003).

    Article  CAS  Google Scholar 

  62. M.M. Cross: Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. J. Colloid Sci. 20 (5), 417 (1965).

    Article  CAS  Google Scholar 

  63. P.J. Carreau, D. De Kee, and R.P. Chhabra: Rheology of Polymeric Systems: Principles and Applications (Hanser Publishers, Munich, 1997).

    Google Scholar 

  64. R.B. Bird, R.C. Armstrong, and O. Hassager: Dynamics of polymeric liquids. In Fluid Mechanics, Vol. 1, 2nd ed. (John Wiley & Sons, New York, 1987).

    Google Scholar 

  65. H.M. Laun: Prediction of elastic strains of polymer melts in shear and elongation. J. Rheol. 30 (3), 459 (1986).

    Article  CAS  Google Scholar 

  66. V. Sharma and G.H. McKinley: An intriguing empirical rule for computing the first normal stress difference from steady shear viscosity data for concentrated polymer solutions and melts. Rheol. Acta 51 (6), 487 (2012).

    Article  CAS  Google Scholar 

  67. T.S. Alves, J.E.S. Neto, S.M.L. Silva, L.H. Carvalho, and E.L. Canedo: Process simulation of laboratory internal mixers. Polym. Test. 50, 94 (2016).

    Article  CAS  Google Scholar 

  68. E.L. Canedo and L.N. Valsamis: Continuous Mixers, in Mixing and Compounding of Polymers, 2nd ed., I. Manas-Zloczower, ed. (Hanser Publishers, Munich, 2009); p. 1081.

  69. M.D. Wetzel and C.K. Shih: Experimental simulation with a simple mixer and real material. In Mixing and Compounding of Polymers, I. Manas-Zloczower, ed. (Hanser Publishers, Munich, 2009); p. 479.

    Google Scholar 

  70. A.R.M. Costa, T.G. Almeida, S.M.L. Silva, L.H. Carvalho, and E.L. Canedo: Chain extension in poly (butylene-adipate-terephthalate). Inline testing in a laboratory internal mixer. Polym. Test. 42, 115 (2015).

    Article  CAS  Google Scholar 

  71. A.A. Tavares, D.F. Silva, P.S. Lima, D.L. Andrade, S.M. Silva, and E.L. Canedo: Chain extension of virgin and recycled polyethylene terephthalate. Polym. Test. 50, 26 (2016).

    Article  CAS  Google Scholar 

  72. I. Aranaz, M. Mengíbar, R. Harris, I. Paños, B. Miralles, N. Acosta, G. Galed, and Á. Heras: Functional characterization of chitin and chitosan. Curr. Chem. Biol. 3 (2), 203 (2009).

    CAS  Google Scholar 

  73. V. Hristov and J. Vlachopoulos: Effects of polymer molecular weight and filler particle size on flow behavior of wood polymer composites. Polym. Compos. 29 (8), 831 (2008).

    Article  CAS  Google Scholar 

  74. H.A. Barnes, J.F. Hutton, and K. Walters: An Introduction to Rheology (Elsevier, Amsterdam, 1989).

    Google Scholar 

  75. A.V. Shenoy: Rheology of Filled Polymer Systems (Springer Science & Business Media, Dordrecht, 1999).

    Book  Google Scholar 

  76. I.M. Krieger and T.J. Dougherty: A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3 (1), 137 (1959).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Braskem and Chemtura for the donation of the polyethylene resin and maleated polyethylene, and to the Conselho Nacional de Pesquisa (CNPq—Brazil), Grant # 478968/2013-2, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—Brazil) and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE—Brazil), DCR-0009-3.03/12, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suédina M. L. Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, P.S., Brito, R.S.F., Santos, B.F.F. et al. Rheological properties of HDPE/chitosan composites modified with PE-g-MA. Journal of Materials Research 32, 775–787 (2017). https://doi.org/10.1557/jmr.2016.519

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.519

Navigation