Skip to main content
Log in

Microwave-assisted synthesis of Nb2O5 for photocatalytic application of nanopowders and thin films

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new rapid and energy saving method for the obtention of high performance nanoparticles and thin films of Nb2O5 by microwave-assisted hydrothermal synthesis is reported. The hydrothermal treatment of a sol–gel precursor solution in a microwave oven at 180 °C for 20 min was enough to obtain amorphous nanoparticles with average sizes of 40 nm. The calcination promotes the formation of different phases of Nb2O5 (TT and T) with pseudohexagonal and orthorhombic structure, respectively, that transform at higher temperatures in a mixture of orthorhombic and monoclinic phases. Crystalline phase composition was found to have a significant influence on the photocatalytic activity. The best photocatalytic performance was observed for the material mainly constituted by the TT-Nb2O5 phase. Thin films constituted by the TT phase were prepared by dip-coating. Photocatalytic experiments confirmed the high photocatalytic activity of this material, which showed a kinetic curve similar to that of a reference TiO2-P25 thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. B. Liu, H. Wang, Y. Chen, J. Wang, L. Peng, and L. Li: Pt nanoparticles anchored on Nb2O5 and carbon fibers as an enhanced performance catalyst for methanol oxidation. J. Alloys Compd. 682, 584 (2016).

    Article  CAS  Google Scholar 

  2. M.A. Aegerter: Sol–gel niobium pentoxide: A promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis. Sol. Energy Mater. Sol. Cells 68, 401 (2001).

    Article  CAS  Google Scholar 

  3. M. Lübke, A. Sumboja, I.D. Johnson, D.J.L. Brett, P.R. Shearing, Z. Liu, and J.A. Darr: High power nano-Nb2O5 negative electrodes for lithium-ion batteries. Electrochim. Acta 192, 363 (2016).

    Article  Google Scholar 

  4. H.K. Kim, D. Mhamane, M.S. Kim, H.K. Roh, V. Aravindan, S. Madhavi, K.C. Roh, and K.B. Kim: TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor. J. Power Sources 327, 171 (2016).

    Article  CAS  Google Scholar 

  5. T.Y. Cho, K.W. Ko, S.G. Yoon, S.S. Sekhon, M.G. Kang, Y.S. Hong, and C.H. Han: Efficiency enhancement of flexible dye-sensitized solar cell with sol–gel formed Nb2O5 blocking layer. Curr. Appl. Phys. 13(7), 1391 (2013).

    Article  Google Scholar 

  6. Z. Shen, G. Wang, H. Tian, J. Sunarso, L. Liu, J. Liu, and S. Liu: Bi-layer photoanode films of hierarchical carbon-doped brookite-rutile TiO2 composite and anatase TiO2 beads for efficient dye-sensitized solar cells. Electrochim. Acta 216, 429 (2016).

    Article  CAS  Google Scholar 

  7. S. Ueno and S. Fujihara: Effect of an Nb2O5 nanolayer coating on ZnO electrodes in dye-sensitized solar cells. Electrochim. Acta 56(7), 2906 (2011).

    Article  CAS  Google Scholar 

  8. G.S. Chao Liang, Z. Wu, P. Li, J. Fan, and Y. Zhang: Chemical bath deposited rutile TiO2 compact layer toward efficient planar heterojunction perovskite solar cells. Appl. Surf. Sci. 391, 2 (2016).

    Google Scholar 

  9. C. Belver, J. Bedia, and J.J. Rodriguez: Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants. J. Hazard. Mater. 322, 233 (2015).

    Article  Google Scholar 

  10. O.F. Lopes, E.C. Paris, and C. Ribeiro: Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: A mechanistic study. Appl. Catal., B 144, 800 (2014).

    Article  CAS  Google Scholar 

  11. C. Karunakaran, R. Dhanalakshmi, P. Gomathisankar, and G. Manikandan: Enhanced phenol-photodegradation by particulate semiconductor mixtures: Interparticle electron-jump. J. Hazard. Mater. 176, 799 (2010).

    Article  CAS  Google Scholar 

  12. M.P.F. Graca, A. Meireles, C. Nico, and M.A. Valente: Nb2O5 nanosize powders prepared by sol–gel—Structure, morphology and dielectric properties. J. Alloys Compd. 553, 177 (2013).

    Article  CAS  Google Scholar 

  13. M. Ziolek: Niobium-containing catalysts—The state of the art. Catal. Today 78(1–4), 47 (2003).

    Article  CAS  Google Scholar 

  14. Z. Yue, A. Liu, C. Zhang, J. Huang, M. Zhu, Y. Du, and P. Yang: Noble-metal-free hetero-structural CdS/Nb2O5/N-doped-graphene ternary photocatalytic system as visible-light-driven photocatalyst for hydrogen evolution. Appl. Catal., B 201, 202 (2017).

    Article  CAS  Google Scholar 

  15. F. Hashemzadeh, R. Rahimi, and A. Ghaffarinejad: Mesoporous nanostructures of Nb2O5 obtained by an EISA route for the treatment of malachite green dye-contaminated aqueous solution under UV and visible light irradiation. Ceram. Int. 40(7), 9817 (2014).

    Article  CAS  Google Scholar 

  16. L.C.A. Oliveira, H.S. Oliveira, G. Mayrink, H.S. Mansur, A.A.P. Mansur, and R.L. Moreira: One-pot synthesis of CdS@Nb2O5 core–shell nanostructures with enhanced photocatalytic activity. Appl. Catal., B 152–153(1), 403 (2014).

    Article  Google Scholar 

  17. H. Jiang, Y. Liu, S. Zang, J. Li, and H. Wang: Microwave-assisted hydrothermal synthesis of Nd, N, and P tri-doped TiO2 from TiCl4 hydrolysis and synergetic mechanism for enhanced photoactivity under simulated sunlight irradiation. Mater. Sci. Semicond. Process. 40, 822 (2015).

    Article  CAS  Google Scholar 

  18. S.M. Lam, J.C. Sin, I. Satoshi, A.Z. Abdullah, and A.R. Mohamed: Enhanced sunlight photocatalytic performance over Nb2O5/ZnO nanorod composites and the mechanism study. Appl. Catal., A 471, 126 (2014).

    Article  CAS  Google Scholar 

  19. G. Falk, M. Borlaf, T. Bendo, A.P. Novaes de Oliveira, J.B. Rodrigues Neto, and R. Moreno: Colloidal sol–gel synthesis and photocatalytic activity of nanoparticulate Nb2O5 sols. J. Am. Ceram. Soc. 99(6), 1968 (2016).

    Article  CAS  Google Scholar 

  20. C. Tang, L. Liu, Y. Li, and Z. Bian: Aerosol spray assisted assembly of TiO2 mesocrystals into hierarchical hollow microspheres with enhanced photocatalytic performance. Appl. Catal., B 201, 41 (2017).

    Article  CAS  Google Scholar 

  21. A. Mirzaei and G. Neri: Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review. Sens. Actuators, B 237, 749 (2016).

    Article  CAS  Google Scholar 

  22. X.H. Zhu and Q.M. Hang: Microscopical and physical characterization of microwave and microwave-hydrothermal synthesis products. Micron 44(1), 21 (2013).

    Article  CAS  Google Scholar 

  23. L.Y. Meng, B. Wang, M.G. Ma, and K.L. Lin: The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater. Today Chem. 1–2, 63 (2016).

    Article  Google Scholar 

  24. M. Bhattacharya and T. Basak: A review on the susceptor assisted microwave processing of materials. Energy 97, 306 (2016).

    Article  Google Scholar 

  25. H. Lin and C. Shih: Chemical efficient one-pot microwave-assisted hydrothermal synthesis of M (M = Cr, Ni, Cu, Nb) and nitrogen co-doped TiO2 for hydrogen production by photocatalytic water splitting. J. Mol. Catal. A: Chem. 411, 128 (2016).

    Article  CAS  Google Scholar 

  26. H. Yang, H. Xu, L. Wang, L. Zhang, Y. Huang, and X. Hu: Microwave-assisted rapid synthesis of self-assembled T-Nb2O5 nanowires for high-energy hybrid supercapacitors. Chem.–Eur. J. doi: https://doi.org/10.1002/chem.201700010.

  27. J. Tauc: Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 5(4), 721 (1970).

    Article  CAS  Google Scholar 

  28. C. Valencia-Balvín, S. Pérez-Walton, G.M. Dalpian, and J.M. Osorio-Guillén: First-principles equation of state and phase stability of niobium pentoxide. Comput. Mater. Sci. 81, 133 (2014).

    Article  Google Scholar 

  29. L.K.S. Herval, D. Von Dreifus, A.C. Rabelo, A.D. Rodrigues, E.C. Pereira, Y.G. Gobato, A.J.A. de Oliveira, and M.P.F. Godoy: The role of defects on the structural and magnetic properties of Nb2O5. J. Alloys Compd. 653, 358 (2015).

    Article  CAS  Google Scholar 

  30. J.M. Jehng and I.E. Wachs: Structural chemistry and raman spectra of niobium oxides. Chem. Mater. 3(1), 100 (1991).

    Article  CAS  Google Scholar 

  31. T. Ikeya and M. Senna: Change in the structure of niobium pentoxide due to mechanical and thermal treatments. J. Non-Cryst. Solids 105(3), 243 (1988).

    Article  CAS  Google Scholar 

  32. C. Nico, M.R.N. Soares, J. Rodrigues, M. Matos, R. Monteiro, M.P.F. Graça, M.A. Valente, F.M. Costa, and T. Monteiro: Sintered NbO powders for electronic device applications. J. Phys. Chem. C 115, 4879 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Ministerio de Economía y Competitividad (Government of Spain) and FEDER Funds under the Grant no. MAT2015-67586-C3-2-R and CTM2015-69246-R. The authors thank the resources provided by CAPES under the International Cooperation Program Science without Borders for Special Guest Researcher, PVE (MEC/MCTI/CAPES/CNPQ/FAP/71/2013), Project No. A011/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Moreno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falk, G., Borlaf, M., López-Muñoz, M.J. et al. Microwave-assisted synthesis of Nb2O5 for photocatalytic application of nanopowders and thin films. Journal of Materials Research 32, 3271–3278 (2017). https://doi.org/10.1557/jmr.2017.93

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.93

Navigation