Skip to main content
Log in

Study on preparation of polyacrylonitrile/polyimide composite lithium-ion battery separator by electrospinning

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Compared with commercial polyolefin membranes, polyacrylonitrile (PAN) membrane prepared by electrostatic spinning has higher porosity, electrolyte uptake, thermal stability, and lithium-ion conductivity, etc. However, poor mechanical performance has largely limited the application of electrospun PAN separators. In this study, PAN/polyimide (PI) composite membrane is prepared by electrostatic spinning to improve the mechanical and electrochemical performances. Scanning electron microscopy, thermal analysis method, and electrochemical methods were used for evaluation of the electrospun composite membrane. The results show that the composite membrane possesses good thermal stability and exhibits better mechanical performance than pristine PAN membrane (increasing by 1.1 times in tension strength). The addition of PI can increase porosity and fluid absorption rate obviously. In addition, the composite membrane has high ionic conductivity (18.77 × 10−4 S/cm), wide electrochemical window (about 4.0 V), and excellent cycling performance. It can retain a discharge specific capacity of 153 mA h/g even after 50 cycles at 0.5 C. The electrospun PAN/PI membrane may be a promising candidate for lithium-ion battery separators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. P. Arora and Z. Zhang: Battery separators. Chem. Rev. 104, 4419 (2016).

    Article  Google Scholar 

  2. H. Li, B. Zhang, B. Lin, Y.Z. Yang, Y. Zhao, and L. Wang: Electrospun poly(ether ether ketone) nanofibrous separator with superior performance for lithium-ion batteries. J. Electrochem. Soc. 165, A939 (2018).

    Article  CAS  Google Scholar 

  3. K. Peng, B. Wang, and C. Ji: A poly(ethylene terephthalate) nonwoven sandwiched electrospun polysulfonamide fibrous separator for rechargeable lithium ion batteries. J. Appl. Polym. Sci. 134, 44907 (2017).

    Google Scholar 

  4. Y. Zhang, Z. Wang, H. Xiang, P. Shi, and H. Wang: A thin inorganic composite separator for lithium-ion batteries. J. Membr. Sci. 509, 19 (2016).

    Article  CAS  Google Scholar 

  5. N. Sato: Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles. J. Power Sources 99, 70 (2001).

    Article  CAS  Google Scholar 

  6. Q.S. Wang, P. Ping, X.J. Zhao, G.Q. Chu, and J.H. Sun: ChemInform abstract: Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208, 210 (2012).

    Article  CAS  Google Scholar 

  7. W.X. Ji, F. Wang, J.F. Qian, Y.L. Cao, X.P. Ai, and H.X. Yang: 3, 4-ethylenedioxythiophene monomer as safety-enhancing additive for lithium ion batteries. J. Electrochem. 22, 271 (2016).

    CAS  Google Scholar 

  8. H. Li, W.X. Ji, Y.L. Cao, H. Zhan, H.X. Yang, and X.P. Ai: Thermal runaway-preventing technologies for lithium-ion batteries. J. Energy Storage Sci. Technol. 3, 2095 (2018).

    CAS  Google Scholar 

  9. J. Liu, Y.B. Liu, W.X. Yang, Q. Ren, F.G. Li, and Z.H. Huang: Lithium ion battery separator with high performance and high safety enabled by tri-layered SiO2@PI/m-PE/SiO2@PI nanofiber composite membrane. J. Power Sources 396, 265 (2018).

    Article  CAS  Google Scholar 

  10. D.Z. Wu, C. Shi, S.H. Huang, X.C. Qiu, H. Wang, Z. Zhan, P. Zhang, J.B. Zhao, D.H. Sun, and L.W. Lin: Electrospun nanofibers for sandwiched polyimide/poly(vinylidene fluoride)/polyimide separators with the thermal shutdown function. Electrochim. Acta 176, 727 (2015).

    Article  CAS  Google Scholar 

  11. Y.S. Wu and K.L. Hu: Influence of Carbon Nanotubes on the Electrochemical Properties of Lithium-Ion Battery Anode Materials[C]//Proceedings of the 2nd International Conference on Intelligent Technologies and Engineering Systems (ICITES2013). Springer, Cham, 2014: 391–398.

    Chapter  Google Scholar 

  12. U.O. Waterloo: Ultra-thin nanomaterial is at the heart of a major battery breakthrough. Nat. Commun. (2015).

  13. L. Cao, P. An, Z. Xu, and J. Huang: Performance evaluation of electrospun polyimide non-woven separators for high power lithium-ion batteries. J. Electroanal. Chem. 767, 34 (2016).

    Article  CAS  Google Scholar 

  14. J. Chen, D.J. Zhang, and T.J. Zhang: Preparation of thermoplastic polyimide ultrafine fiber nonwovens by electrospinning. J. Mater. Eng. 2, 1001 (2018).

    Google Scholar 

  15. D. Boriboon, T. Vongsetskul, P. Limthongkul, W. Kobsiriphat, and P. Tammawat: Cellulose ultrafine fibers embedded with titania particles as a high performance and eco-friendly separator for lithium-ion batteries. Carbohydr. Polym. 189, 145 (2018).

    Article  CAS  Google Scholar 

  16. T.H. Cho, T. Sakai, S. Tanase, K. Kimura, Y. Kondo, and M. Tanaka: Electrochemical performances of polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion battery. Electrochem. Solid-State Lett. 10, 982 (2007).

    Google Scholar 

  17. P. Raghavan, J. Manuel, X.H. Zhao, D.S. Kim, and J.H. Ahn: Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. J. Power Sources 196, 6742 (2011).

    Article  CAS  Google Scholar 

  18. J. Ding, Y. Kong, P. Li, and J.R. Yang: Polyimide/poly(ethylene terephthalate) composite membrane by electrospinning for nonwoven separator for lithium-ion battery. J. Electrochem. Soc. 159, A1474 (2012).

    Article  CAS  Google Scholar 

  19. Z.P. Wu, D.Z. Wu, S.L. Qi, T. Zhang, Q. Cai, P. Zhang, Y.F. Zhang, and R.G. Jin: Effect of polyimide structure on the reflectivity and conductivity of silvered polyimide films. Polym. Mater. Sci. Eng. 22, 95 (2006).

    CAS  Google Scholar 

  20. Z. Bo: DuPont develops barrier film for batteries. World Plast. 22, 6 (2010).

    Google Scholar 

  21. J. Hou, W. Jang, S.Y. Kim, J.H. Kim, and H.S. Byun: Rapid formation of polyimide nanofiber membranes via hot-press treatment and their performance as Li-ion battery separators. RSC Adv. 8, 14958 (2018).

    Article  CAS  Google Scholar 

  22. Y.E. Miao, G.N. Zhu, H.Q. Hou, Y.Y. Xia, and T.X. Liu: Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J. Power Sources 226, 82 (2013).

    Article  CAS  Google Scholar 

  23. Y. Wang, S.Q. Wang, J.Q. Fang, L.X. Ding, and H.H. Wang: A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J. Membr. Sci. 537, 248 (2017).

    Article  CAS  Google Scholar 

  24. X. Ma, P. Kolla, R. Yang, W. Zhao, Y. Zhao, A.L. Smirnova, and H. Fong: Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators. Electrochim. Acta 236, 417 (2017).

    Article  CAS  Google Scholar 

  25. J.D. Li, Q. Zhong, Y.Y. Yao, S.H. Bi, T. Zhou, X.M. Guo, M.Q. Wu, T.T. Feng, and R.L. Xiang: Electrochemical performance and thermal stability of the electrospun PTFE nanofiber separator for lithium-ion batteries. J. Appl. Polym. Sci. 135, 46508. (2018).

    Article  Google Scholar 

  26. S. Abada, G. Marlair, A. Lecocq, M. Petit, V. Sauvant-Moynot, and F. Huet: Safety focused modeling of lithium-ion batteries: A review. J. Power Sources 306, 178 (2016).

    Article  CAS  Google Scholar 

  27. W. Yu, K.C. Lau, Y. Lei, R.L. Liu, L. Qin, W. Yang, B.H. Li, L.A. Curtiss, D.Y. Zhai, and F.Y. Kang: A dendrite-free potassium-oxygen battery based on a liquid alloy anode. ACS Appl. Mater. Interfaces 9, 31871 (2017).

    Article  CAS  Google Scholar 

  28. J. Zhu, S. Wei, R. Dan, H. Neel, and P.Y. David: Magnetic polyacrylonitrile-Fe@FeO nanocomposite fibers—Electrospinning, stabilization and carbonization. Polymer 52, 2947 (2011).

    Article  CAS  Google Scholar 

  29. H.L. Chen and X.N. Jiao: Preparation and characterization of Polyvinylidene fluoride/Octaphenyl-Polyhedral oligomeric silsesquioxane hybrid Lithium-ion battery separators by electrospinning. Solid State Ionics 134, 310 (2017).

    Google Scholar 

  30. X. Lin, M. Salari, L.M. Arava, P.M. Ajayanc, and M.W. Grinstaff: High temperature electrical energy storage: Advances, challenges, and frontiers. Chem. Soc. Rev. 45, 5848 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51572177) and the National Natural Science Foundation of China (51072125). All authors read and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, P., Fu, Q.S. et al. Study on preparation of polyacrylonitrile/polyimide composite lithium-ion battery separator by electrospinning. Journal of Materials Research 34, 642–651 (2019). https://doi.org/10.1557/jmr.2019.8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.8

Navigation