Skip to main content
Log in

Raman investigation of the air stability of 2H polytype HfSe2 thin films

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Hafnium diselenide (HfSe2) has a high theoretical carrier mobility but is among the most reactive transition-metal dichalcogenides (TMDs). Herein, we have investigated the air stability of 2H polytype HfSe2 single-crystal thin films by spectroscopic and microscopic techniques. Raman spectroscopy measurements in conjunction with atomic force microscopy reveal the formation of selenium-rich blisters on the surface of the crystals upon air exposure. Transmission electron microscopy analysis indicates that 2H-HfSe2 undergoes a spontaneous phase change to 1T-HfSe2. These results offer Raman spectroscopy as a fast, convenient, non-destructive technique to reliably monitor the surface degradation of TMDs and present an opportunity for further study of phase changes in this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. L. Yin, K. Xu, Y. Wen, Z. Wang, Y. Huang, F. Wang, T.A. Shifa, R. Cheng, H. Ma, and J. He: Ultrafast and ultrasensitive phototransistors based on few-layered HfSe2. Appl. Phys. Lett. 109, 213105 (2016).

    Article  Google Scholar 

  2. R. Yue, A.T. Barton, H. Zhu, A. Azcatl, L.F. Pena, J. Wang, X. Peng, N. Lu, L. Cheng, R. Addou, S. McDonnell, L. Colombo, J.W.P. Hsu, J. Kim, M.J. Kim, R.M. Wallace, and C. Hinkle: HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. ACS Nano 9, 474–480 (2015).

    Article  CAS  Google Scholar 

  3. D.L. Greenaway and R. Nitsche: Preparation and optical properties of group IV–VI2 chalcogenides having the CdI2 structure. J. Phys. Chem. Sol. 26, 1445–1458 (1965).

    Article  CAS  Google Scholar 

  4. A. Cingolani, M. Lugara, and F. Levy: Resonance Raman scattering in HfSe2 and HfS2. Phys. Scr. 37, 389–391 (1988).

    Article  CAS  Google Scholar 

  5. T.J. Wieting and J.L. Verble: Infrared and Raman Investigations of Long-Wavelength Phonons in Layered Materials, in Electrons and Phonons in Layered Crystal Structures (D. Reidel Publishing Company, Dordrecht, 1979), pp. 324–344.

    Chapter  Google Scholar 

  6. F.A. Rasmussen and K.S. Thygesen: Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119, 13169–13183 (2015).

    Article  CAS  Google Scholar 

  7. W. Zhang, Z. Huang, W. Zhang, and Y. Li: Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 7, 1731–1737 (2104).

    Article  Google Scholar 

  8. S. Najmaei, M.R. Neupane, B.M. Nichols, R.A. Burke, A.L. Mazzoni, M.L. Chin, D.A. Rhodes, L. Balicas, A.D. Franklin, and M. Dubey: Cross-plane carrier transport in van der Waals layered materials. Small 14, 1703808 (2018).

    Article  Google Scholar 

  9. G. Mirabelli, C. McGeough, M. Schmidt, E.K. McCarthy, S. Monaghan, I.M. Povey, M. McCarthy, F. Gity, R. Nagle, G. Hughes, A. Cafolla, P.K. Hurley, and R. Duffy: Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2. J. Appl. Phys. 120, 125102 (2016).

    Article  Google Scholar 

  10. A.S. George, Z. Mutlu, R. Ionescu, R.J. Wu, J.S. Jeong, H.H. Bay, Y. Chai, K.A. Mkhoyan, M. Ozkan, and C.S. Ozkan: Wafer scale synthesis and high resolution structural characterization of atomically thin MoS2 layers. Adv. Funct. Matter 24, 7461–7466 (2014).

    Article  CAS  Google Scholar 

  11. Z. Mutlu, R.J. Wu, D. Wickramaratne, S. Shahrezaei, L. Chueh, S. Temiz, A. Patalano, M. Ozkan, R.K. Lake, K.A. Mkhoyan, and C.S. Ozkan: Phase engineering of 2D tin sulfides. Small 22, 12 (2016).

    Google Scholar 

  12. X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan: Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757–2785 (2015).

    Article  CAS  Google Scholar 

  13. M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.-L. Zhang, and A.Z. Moshfegh: Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horiz. 3, 90–204 (2017).

    Article  Google Scholar 

  14. J. Ribeiro-Soares, R.M. Almeida, E.B. Barros, P.T. Araujo, M.S. Dresselhaus, L.G. Cancado, and A. Jorio: Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Phys. Rev. B 90, 115438 (2014).

    Article  Google Scholar 

  15. J.S. Kim, J. Kim, J. Zhao, S. Kim, J.H. Lee, Y. Jin, H. Choi, B.H. Moon, J.J. Bae, Y.H. Lee, and S.C. Lim: Electrical transport properties of polymorphic MoS2. ACS Nano 10, 7500–7506 (2016).

    Article  CAS  Google Scholar 

  16. C. Ataca, H. Sahin, and S. Ciraci: Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012).

    Article  CAS  Google Scholar 

  17. C. Gong, H. Zhang, W. Wang, L. Colombo, R.M. Wallace, and K. Cho: Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013).

    Article  Google Scholar 

  18. Semiconductors: Large size high quality flux zone grown vdW HfSe2 crystals (2018). Available at: http://www.2dsemiconductors.com/hafnium-diselenide-hfse2/ (Accessed April 10, 2018).

    Google Scholar 

  19. H. Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q. Xiong, and H. Zhang: Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7, 10344–10353 (2013).

    Article  CAS  Google Scholar 

  20. G. Yumnam, T. Pandey, and A.K. Singh: High temperature thermoelectric properties of Zr and Hf based transition metal dichalcogenides: a first principles study. J. Chem. Phys. 143, 234704–8 (2015).

    Article  Google Scholar 

  21. K. Nagata, K. Ishibashi, and Y. Miyamoto: Raman and infrared spectra of rhombohedral selenium. Japanese J. Appl. Phys. 20, 463–469 (1981).

    Article  CAS  Google Scholar 

  22. S. Song, D.H. Keum, S. Cho, D. Perello, Y. Kim, and Y.H. Lee: Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188–193 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible by support from C-SPIN, a funded center of STARnet, through a SRC program sponsored by MARCO and DARPA. Raman measurements were performed in the ACIF at the UC Riverside. TEM analysis was performed in the CFAMM at the UC Riverside. The authors thank Dr. Krassimir N. Bozhilov for his assistance with TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cengiz S. Ozkan.

Additional information

Work performed during postdoctoral studies at the University of California, Riverside.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.185.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, A., Mutlu, Z., Ozkan, M. et al. Raman investigation of the air stability of 2H polytype HfSe2 thin films. MRS Communications 8, 1191–1196 (2018). https://doi.org/10.1557/mrc.2018.185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.185

Navigation