Skip to main content
Log in

Challenges in fabricating graphene nanodevices for electronic DNA sequencing

  • 2D Nanomaterials for Healthcare and Lab-on-a-Chip Devices Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Graphene-based electronic DNA sequencing techniques have received significant attention over the past decade and are hoped to provide a new generation of portable, low-cost devices capable of rapid and accurate DNA sequencing. However, these devices are yet to demonstrate DNA sequencing. This is partly due to complex fabrication requirements resulting in low device yields and limited throughput. In this paper, we review the challenging fabrication of graphene-based electronic DNA sequencing devices. We will place a particular focus on common fabrication challenges and look toward the development of high-throughput, high-yield fabrication of these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. J. Shendure and H. Ji: Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    Article  CAS  Google Scholar 

  2. M.L. Metzker: Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31–46 (2009).

    Article  CAS  Google Scholar 

  3. D. Deamer, M. Akeson, and D. Branton: Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).

    Article  CAS  Google Scholar 

  4. E.E. Schadt, S. Turner, and A. Kasarskis: A window into third-generation sequencing. Hum. Mol. Genet. 19, R227–R240 (2010).

    Article  CAS  Google Scholar 

  5. A.L. Norris, R.E. Workman, Y. Fan, J.R. Eshleman, and W. Timp: Nanopore sequencing detects structural variants in cancer. Cancer Biol. Ther. 17, 246–253 (2016).

    Article  CAS  Google Scholar 

  6. P. Stankiewicz and J.R. Lupski: Structural variation in the human genome and its role in disease. Annu. Rev. Med. 61, 437–455 (2010).

    Article  CAS  Google Scholar 

  7. E.R. Mardis: Next-generation DNA sequencing methods. Annu. Rev. Genom. Hum. Genet. 9, 387–402 (2008).

    Article  CAS  Google Scholar 

  8. M.J.P. Chaisson, R.K. Wilson, and E.E. Eichler: Genetic variation and the de novo assembly of human genomes. Nat. Rev. Genet. 16, 627–640 (2015).

    Article  CAS  Google Scholar 

  9. D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krstic, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, and J.A. Schloss: The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  Google Scholar 

  10. C. Dekker: Solid-state nanopores. Nat. Nanotechnol. 2, 209–215 (2007).

    CAS  Google Scholar 

  11. Y. Wang, Q. Yang, and Z. Wang: The evolution of nanopore sequencing. Front. Genet. 5, (2015). Article no. 449.

  12. J.J. Kasianowicz, E. Brandin, D. Branton, and D.W. Deamer: Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93, 13770–13773 (1996).

    CAS  Google Scholar 

  13. G.M. Cherf, K.R. Lieberman, H. Rashid, C.E. Lam, K. Karplus, and M. Akeson: Automated forward and reverse ratcheting of DNA in a nanopore at 5a precision. Nat. Biotechnol. 30, 344–348 (2012).

    CAS  Google Scholar 

  14. E.A. Manrao, I.M. Derrington, A.H. Laszlo, K.W. Langford, M.K. Hopper, N. Gillgren, M. Pavlenok, M. Niederweis, and J.H. Gundlach: Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    CAS  Google Scholar 

  15. B.M. Venkatesan and R. Bashir: Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6, 615–624 (2011).

    CAS  Google Scholar 

  16. A.S. Mikheyev and M.M.Y. Tin: A first look at the oxford nanopore MinION sequencer. Mol. Ecol. Resour. 14, 1097–1102 (2014).

    CAS  Google Scholar 

  17. M. Jain, H.E. Olsen, B. Paten, and M. Akeson: The oxford nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17, (2016). Article no. 239.

  18. M. Jain, S. Koren, K.H. Miga, J. Quick, A.C. Rand, T.A. Sasani, J.R. Tyson, A.D. Beggs, A.T. Dilthey, I.T. Fiddes, S. Malla, H Marriott, T. Nieto, J.O. Grady, H.E. Olsen, B.S. Pedersen, A. Rhie, H. Richardson, A.R. Quinlan, T.P. Snutch, L. Tee, B. Paten, A.M. Phillippy, J.T. Simpson, N.J. Loman, and M. Loose: Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).

    CAS  Google Scholar 

  19. S.J. Heerema and C. Dekker: Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127–136 (2016).

    CAS  Google Scholar 

  20. C.A. Merchant, K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M.D. Fischbein, K. Venta, Z. Luo, A.T.C. Johnson, and M. Drndic: DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).

    CAS  Google Scholar 

  21. G.F. Schneider, S.W. Kowalczyk, V.E. Calado, G. Pandraud, H.W. Zandbergen, L.M.K. Vandersypen, and C. Dekker: DNA translocation through graphene nanopores. Nano Lett. 10, 3163–3167 (2010).

    CAS  Google Scholar 

  22. S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, and J.A. Golovchenko: Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).

    CAS  Google Scholar 

  23. J.K. Rosenstein, M. Wanunu, C.A. Merchant, M. Drndic, and K.L. Shepard: Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods, 9, 487–492 (2012).

    CAS  Google Scholar 

  24. T. Nelson, B. Zhang, and O.V. Prezhdo: Detection of nucleic acids with graphene nanopores: Ab initio characterization of a novel sequencing device. Nano Lett. 10, 3237–3242 (2010).

    CAS  Google Scholar 

  25. F. Traversi, C. Raillon, S.M. Benameur, K. Liu, S. Khlybov, M. Tosun, D. Krasnozhon, A. Kis, and A. Radenovic: Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat. Nanotechnol. 8, 939–945 (2013).

    CAS  Google Scholar 

  26. H.W.C. Postma: Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 10, 420–425 (2010).

    CAS  Google Scholar 

  27. S.K. Min, W.Y. Kim, Y. Cho, and K.S. Kim: Fast DNA sequencing with a graphene-based nanochannel device. Nat. Nanotechnol. 6, 162–165 (2011).

    CAS  Google Scholar 

  28. K. Healy, V. Ray, L.J. Willis, N. Peterman, J. Bartel, and M. Drndić: Fabrication and characterization of nanopores with insulated transverse nanoelectrodes for DNA sensing in salt solution. Electrophoresis 33, 3488–3496 (2012).

    CAS  Google Scholar 

  29. A. Fanget, F. Traversi, S. Khlybov, P. Granjon, A. Magrez, L. Forró, and A. Radenovic: Nanopore integrated nanogaps for DNA detection. Nano Lett. 14, 244–249 (2013).

    Google Scholar 

  30. S.J. Heerema, L. Vicarelli, S. Pud, R.N. Schouten, H.W. Zandbergen, and C. Dekker: Probing DNA translocations with inplane current signals in a graphene nanoribbon with a nanopore. ACS Nano 12, 2323–2633 (2018).

    Article  CAS  Google Scholar 

  31. Z. Yuan, C. Wang, X. Yi, Z. Ni, Y. Chen, and T. Li: Solid-state nanopore. Nanoscale Res. Lett. 13, (2018). Article no. 56.

  32. H.S. Kim and Y.-H. Kim: Recent progress in atomistic simulation of electrical current DNA sequencing. Biosens. Bioelectron. 69, 186–198 (2015).

    Article  CAS  Google Scholar 

  33. K.K. Saha, M. Drndić, and B.K. Nikolić: DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore. Nano Lett. 12, 50–55 (2011).

    Article  CAS  Google Scholar 

  34. F.-P. Ouyang, S.-L. Peng, H. Zhang, L.-B. Weng, and H. Xu: A biosensor based on graphene nanoribbon with nanopores: a first-principles devices-design. Chin. Phys. B. 20, 058504 (2011).

    Article  CAS  Google Scholar 

  35. S.M. Avdoshenko, D. Nozaki, C.G. da Rocha, J.W. González, M.H. Lee, R. Gutierrez, and G. Cuniberti: Dynamic and electronic transport properties of DNA translocation through graphene nanopores. Nano Lett. 13, 1969–1976 (2013).

    Article  CAS  Google Scholar 

  36. A. Girdhar, C. Sathe, K. Schulten, and J.-P. Leburton: Graphene quantum point contact transistor for DNA sensing. Proc. Natl. Acad. Sci. USA 110, 16748–16753 (2013).

    Article  CAS  Google Scholar 

  37. M. Puster, A. Balan, J.A. Rodrguez-Manzo, G. Danda, J.-H. Ahn, W. Parkin, and M. Drndić: Cross-talk between ionic and nanoribbon current signals in graphene nanoribbon-nanopore sensors for single-molecule detection. Small 11, 6309–6316 (2015).

    Article  CAS  Google Scholar 

  38. M. Puster, J.A. Rodrguez-Manzo, A. Balan, and M. Drndić: Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage. ACS Nano 7, 11283–11289 (2013).

    Article  CAS  Google Scholar 

  39. A.W. Grant, Q.-H. Hu, and B. Kasemo: Transmission electron microscopy windows for nanofabricated structures. Nanotechnology 15, 1175–1181 (2004).

    Article  CAS  Google Scholar 

  40. M.-H. Lee, A. Kumar, K.-B. Park, S.-Y. Cho, H.-M. Kim, M.-C. Lim, Y.-R. Kim, and K.-B. Kim: A low-noise solid-state nanopore platform based on a highly insulating substrate. Sci. Rep., 4, (2014). Article no. 7448.

  41. I. Yanagi, T. Ishida, K. Fujisaki, and K.i Takeda: Fabrication of 3-nm-thick si3n4 membranes for solid-state nanopores using the poly-si sacrificial layer process. Sci. Rep., 5, (2015). Article no. 14656.

  42. A.P. Ivanov, E. Instuli, C.M. McGilvery, G. Baldwin, D.W. McComb, T. Albrecht, and J.B. Edel: DNA tunneling detector embedded in a nanopore. Nano Lett. 11, 279–285 (2011).

    CAS  Google Scholar 

  43. Y. Temiz, A. Ferretti, Y. Leblebici, and C. Guiducci: A comparative study on fabrication techniques for on-chip microelectrodes. Lab. Chip. 12, 4920–4928 (2012).

    Article  CAS  Google Scholar 

  44. D.V. Verschueren, W. Yang, and C. Dekker: Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes. Nanotechnology 29, 145302 (2018).

    Article  CAS  Google Scholar 

  45. W. Asghar, A. Ilyas, J. Billo, and S. Iqbal: Shrinking of solid-state nanopores by direct thermal heating. Nanoscale Res. Lett. 6, 372 (2011).

    Article  CAS  Google Scholar 

  46. H. Kwok, K. Briggs, and V. Tabard-Cossa: Nanopore fabrication by controlled dielectric breakdown. PLoS One 9, e92880 (2014).

    Article  CAS  Google Scholar 

  47. S. Pud, D. Verschueren, N. Vukovic, C. Plesa, M.P. Jonsson, and C. Dekker: Self-aligned plasmonic nanopores by optically controlled dielectric breakdown. Nano Lett. 15, 7112–7117 (2015).

    Article  CAS  Google Scholar 

  48. Y. Wang, C. Ying, W. Zhou, L. de Vreede, Z. Liu, and J. Tian: Fabrication of multiple nanopores in a SiNx membrane via controlled breakdown. Sci. Rep. 8, (2018). Article no. 1234.

  49. A.T. Kuan, B. Lu, P. Xie, T. Szalay, and J.A. Golovchenko: Electrical pulse fabrication of graphene nanopores in electrolyte solution. Appl. Phys. Lett. 106, 203109 (2015).

    Article  CAS  Google Scholar 

  50. P. Puczkarski, J.L. Swett, and J.A. Mol: Graphene nanoelectrodes for biomolecular sensing. J. Mater. Res. 32, 3002–3010 (2017).

    CAS  Google Scholar 

  51. J. Lagerqvist, M. Zwolak, and M. Di Ventra: Fast DNA sequencing via transverse electronic transport. Nano Lett. 6, 779–782 (2006).

    CAS  Google Scholar 

  52. J. Prasongkit, A. Grigoriev, B. Pathak, R. Ahuja, and R.H. Scheicher: Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. Nano Lett. 11, 1941–1945 (2011).

    CAS  Google Scholar 

  53. J. Prasongkit, A. Grigoriev, B. Pathak, R. Ahuja, and R.H. Scheicher: Theoretical study of electronic transport through DNA nucleotides in a double-functionalized graphene nanogap. J. Phys. Chem. C 117, 15421–15428 (2013).

    CAS  Google Scholar 

  54. Y. He, R.H. Scheicher, A. Grigoriev, R. Ahuja, S. Long, Z. Huo, and M. Liu: Enhanced DNA sequencing performance through edge-hydrogenation of graphene electrodes. Adv. Funct. Mater. 21, 2674–2679 (2011).

    CAS  Google Scholar 

  55. R.G. Amorim, A.R. Rocha, and R.H. Scheicher: Boosting DNA recognition sensitivity of graphene nanogaps through nitrogen edge functionalization. J. Phys. Chem. C 120, 19384–19388 (2016).

    CAS  Google Scholar 

  56. T. Ohshiro and Y. Umezawa: Complementary base-pair-facilitated electron tunneling for electrically pinpointing complementary nucleobases. Proc. Natl. Acad. Sci. USA 103, 10–14 (2005).

    Google Scholar 

  57. S. Chang, J. He, A. Kibel, M. Lee, O. Sankey, P. Zhang, and S. Lindsay: Tunnelling readout of hydrogen-bonding-based recognition. Nat. Nanotechnol. 4, 297–301 (2009).

    CAS  Google Scholar 

  58. H. Tanaka and T. Kawai: Partial sequencing of a single DNA molecule with a scanning tunnelling microscope. Nat. Nanotechnol. 4, 518–522 (2009).

    CAS  Google Scholar 

  59. S. Chang, S. Huang, J. He, F. Liang, P. Zhang, S. Li, X. Chen, O. Sankey, and S. Lindsay: Electronic signatures of all four DNA nucleosides in a tunneling gap. Nano Lett. 10, 1070–1075 (2010).

    CAS  Google Scholar 

  60. M. Di Ventra and M. Taniguchi: Decoding DNA, RNA and peptides with quantum tunnelling. Nat. Nanotechnol. 11, 117–126 (2016).

    Google Scholar 

  61. M. Tsutsui, M. Taniguchi, and T. Kawai: Transverse field effects on DNA-sized particle dynamics. Nano Lett. 9, 1659–1662 (2009).

    CAS  Google Scholar 

  62. M. Tsutsui, M. Taniguchi, K. Yokota, and T. Kawai: Identifying single nucleotides by tunnelling current. Nat. Nanotechnol. 5, 286–290 (2010).

    CAS  Google Scholar 

  63. M. Tsutsui, S. Rahong, Y. Iizumi, T. Okazaki, M. Taniguchi, and T. Kawai: Single-molecule sensing electrode embedded in-plane nanopore. Sci. Rep. 1, (2011). Article no. 46.

  64. M. Tsutsui, K. Matsubara, T. Ohshiro, M. Furuhashi, M. Taniguchi, and T. Kawai: Electrical detection of single methylcytosines in a DNA oligomer. J. Am. Chem. Soc. 133, 9124–9128 (2011).

    CAS  Google Scholar 

  65. P. Pang, B.A. Ashcroft, W. Song, P. Zhang, S. Biswas, Q. Qing, J. Yang, R.J. Nemanich, J. Bai, J.T. Smith, K. Reuter, V.S.K. Balagurusamy, Y. Astier, G. Stolovitzky, and S. Lindsay: Fixed-gap tunnel junction for reading DNA nucleotides. ACS Nano 8, 11994–12003 (2014).

    CAS  Google Scholar 

  66. F. Prins, A. Barreiro, J.W. Ruitenberg, J.S. Seldenthuis, N. Aliaga-Alcalde, L.M.K. Vandersypen, and H.S.J. van der Zant: Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 11, 4607–4611 (2011).

    CAS  Google Scholar 

  67. S. Caneva, P. Gehring, V.M. Garca-Surez, A. Garca-Fuente, D. Stefani, I.J. Olavarria-Contreras, J. Ferrer, C. Dekker, and H.S.J. van der Zant: Mechanically controlled quantum interference in graphene break junctions. arXiv:1803.05642 March 2018.

  68. H.M. Wang, Z. Zheng, Y.Y. Wang, J.J. Qiu, Z.B. Guo, Z.X. Shen, and T. Yu: Fabrication of graphene nanogap with crystallographically matching edges and its electron emission properties. Appl. Phys. Lett. 96, 023106 (2010).

    Google Scholar 

  69. A. Bellunato, S.D. Vrbica, C. Sabater, E.W. de Vos, R. Fermin, K.N. Kanneworff, F. Galli, J.M. van Ruitenbeek, and G.F. Schneider: Dynamic tunneling junctions at the atomic intersection of two twisted graphene edges. Nano Lett. 18, 2505–2510 (2018).

    CAS  Google Scholar 

  70. C.S. Lau, J.A. Mol, J.H. Warner, and G.A.D. Briggs: Nanoscale control of graphene electrodes. Phys. Chem. Chem. Phys. 16, 20398–20401 (2014).

    Article  CAS  Google Scholar 

  71. M. El Abbassi, L. Pósa, P. Makk, C. Nef, K. Thodkar, A. Halbritter, and M. Calame: From electroburning to sublimation: substrate and environmental effects in the electrical breakdown process of monolayer graphene. Nanoscale 9, 17312–17317 (2017).

    Article  Google Scholar 

  72. H.N. Patel, I. Carroll, R. Lopez, S. Sankararaman, C. Etienne, S.R. Kodigala, M.R. Paul, and H.W.C. Postma: DNA-graphene interactions during translocation through nanogaps. Plos One 12, e0171505 (2017).

    Article  CAS  Google Scholar 

  73. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Mllen, and R. Fasel: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  CAS  Google Scholar 

  74. Q. Xu, M.-Y. Wu, G.F. Schneider, L. Houben, S.K. Malladi, C. Dekker, E. Yucelen, R.E. Dunin-Borkowski, and H.W. Zandbergen: Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature. ACS Nano 7, 1566–1572 (2013).

    Article  CAS  Google Scholar 

  75. C.E. Arcadia, C.C. Reyes, and J.K. Rosenstein: In situ nanopore fabrication and single-molecule sensing with microscale liquid contacts. ACS Nano 11, 4907–4915 (2017).

    Article  CAS  Google Scholar 

  76. Y. Cho, S.K. Min, W.Y. Kim, and K.S. Kim: The origin of dips for the graphene-based DNA sequencing device. Phys. Chem. Chem. Phys. 13, 14293 (2011).

    Article  CAS  Google Scholar 

  77. J. Bai, X. Duan, and Y. Huang: Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano Lett. 9, 2083–2087 (2009).

    Article  CAS  Google Scholar 

  78. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    Article  CAS  Google Scholar 

  79. M.Y. Han, B. zyilmaz, Y. Zhang, and P. Kim: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  CAS  Google Scholar 

  80. X. Wang and H. Dai: Etching and narrowing of graphene from the edges. Nat. Chem. 2, 661–665 (2010).

    CAS  Google Scholar 

  81. M.D. Fischbein and M. Drndić: Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett. 93, 113107 (2008).

    Google Scholar 

  82. D.C. Bell, M.C. Lemme, L.A. Stern, J.R. Williams, and C.M. Marcus: Precision cutting and patterning of graphene with helium ions. Nanotechnology 20, 455301 (2009).

    CAS  Google Scholar 

  83. D. Xia, J. Yan, and S. Hou: Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis. Small 8, 2787–2801 (2012).

    CAS  Google Scholar 

  84. C. Duan, W. Wang, and Q. Xie: Review article: Fabrication of nanofluidic devices. Biomicrofluidics 7, 026501 (2013).

    Google Scholar 

  85. A. Hibara, T. Saito, H.-B. Kim, M. Tokeshi, T. Ooi, M. Nakao, and T. Kitamori: Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements. Anal. Chem. 74, 6170–6176 (2002).

    CAS  Google Scholar 

  86. S.L. Levy, J.T. Mannion, J. Cheng, C.H. Reccius, and H.G. Craighead: Entropic unfolding of DNA molecules in nanofluidic channels. Nano Lett. 8, 3839–3844 (2008).

    CAS  Google Scholar 

  87. R. Riehn, R.H. Austin, and J.C. Sturm: A nanofluidic railroad switch for DNA. Nano Lett. 6, 1973–1976 (2006).

    Article  CAS  Google Scholar 

  88. D. Xia, Z. Ku, S.C. Lee, and S.R.J. Brueck: Nanostructures and functional materials fabricated by interferometric lithography. Adv. Mater. 23, 147–179 (2010).

    Article  CAS  Google Scholar 

  89. L.J. Guo, X. Cheng, and C.-F. Chou: Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching. Nano Lett. 4, 69–73 (2004).

    Article  CAS  Google Scholar 

  90. X. Liang, K.J. Morton, R.H. Austin, and S.Y. Chou: Single sub-20 nm wide, centimeter-long nanofluidic channel fabricated by novel nanoimprint mold fabrication and direct imprinting. Nano Lett. 7, 3774–3780 (2007).

    CAS  Google Scholar 

  91. X. Liang and S.Y. Chou: Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis. Nano Lett. 8, 1472–1476 (2008).

    CAS  Google Scholar 

  92. T. Maleki, S. Mohammadi, and B. Ziaie: A nanofluidic channel with embedded transverse nanoelectrodes. Nanotechnology 20, 105302 (2009).

    CAS  Google Scholar 

  93. G.F. Schneider, V.E. Calado, H. Zandbergen, L.M.K. Vandersypen, and C. Dekker: Wedging transfer of nanostructures. Nano Lett. 10, 1912–1916 (2010).

    CAS  Google Scholar 

  94. Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K.P. Loh: Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5, 9927–9933 (2011).

    CAS  Google Scholar 

  95. J. Moser, A. Barreiro, and A. Bachtold: Current-induced cleaning of graphene. Appl. Phys. Lett. 91, 163513 (2007).

    Google Scholar 

  96. M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, and E.D. Williams: Atomic structure of graphene on SiO2. Nano Lett. 7, 1643–1648 (2007).

    CAS  Google Scholar 

  97. W. Fu, L. Feng, G. Panaitov, D. Kireev, D. Mayer, A. Offenhusser, and H.-J. Krause: Biosensing near the neutrality point of graphene. Sci. Adv. 3, e1701247 (2017).

    Google Scholar 

  98. L. Sun, Y.A. Diaz-Fernandex, T.A. Gschneidtner, F. Westerlund, S. Lara-Avila, and K. Moth-Pouslen: Single molecule electronics: from chemical design to functional devices. Chem. Soc. Rev. 43, 7378–7411.

Download references

Acknowledgments

This work was funded by the UK EPSRC (Grant No. EP/ N017188/1). JAM is a RAEng Engineering for Development Research Fellow. JPF thanks the Oxford Australia Scholarship Fund for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan A. Mol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fried, J.P., Swett, J.L., Bian, X. et al. Challenges in fabricating graphene nanodevices for electronic DNA sequencing. MRS Communications 8, 703–711 (2018). https://doi.org/10.1557/mrc.2018.187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.187

Navigation