Skip to main content
Log in

Energy Band Gap Modification of Graphene Deposited on a Multilayer Hexagonal Boron Nitride Substrate

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The equilibrium geometry and electronic structure of graphene deposited on a multilayer hexagonal boron nitride (h-BN) substrate has been investigated using the density functional and pseudopotential theories. We found that the energy band gap for the interface between a monolayer graphene (MLG) and a monolayer BN (MLBN) lies between 47 and 62 meV, depending on the relative orientations of the layers. In the most energetically stable configuration the binding energy is found to be approximately 40 meV per C atom. Slightly away from the Dirac point, the dispersion curve is linear, with the electron speed almost identical to that for isolated graphene. The dispersion relation becomes reasonably quadratic for the interface between MLG and 4-layer-BN, with a relative effective mass of 0.0047. While the MLG/MLBN superlattice is metallic, the thinnest armchair nanoribbon of MLG/MLBN interface is semiconducting with a gap of 1.84 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323, 610 (2009).

    Article  CAS  Google Scholar 

  2. S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D. H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Nature Mater. 6, 770 (2007).

    Article  CAS  Google Scholar 

  3. G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, Phys. Rev. B 76, 073103 (2007).

    Article  Google Scholar 

  4. J. Slawinska, I. Zasada, and Z. Klusek, Phys. Rev. B 81, 155433 (2010).

    Article  Google Scholar 

  5. Y. Fan, M. Zhao, Z. Wang, X. Zhang, and H. Zhang, Appl. Phys. Lett. 98, 083103 (2011).

    Article  Google Scholar 

  6. J. Berashevich and T. Chakraborty, Phys. Rev. B 80, 033404 (2009).

    Article  Google Scholar 

  7. W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, Appl. Phys. Lett. 93, 223103 (2008).

    Article  Google Scholar 

  8. N. Alem, R. Erni, C. Kisielowski, M. D. Rossell, W. Gannett, and A. Zettl, Phys. Rev. B 80, 155425 (2009).

    Article  Google Scholar 

  9. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotech. 5, 722 (2010).

    Article  CAS  Google Scholar 

  10. C. R. Dean, A. F. Young, P. Cadden-Zimansky, L. Wang, H. Ren, K. Watanabe, T. Taniguchi, P. Kim, J. Hone, and K. L. Shepard, Nature Physics 7, 693 (2011).

    Article  CAS  Google Scholar 

  11. D. Usachov, V. K. Adamchuk, D. Haberer, A. Gruneis, H. Sachdev, A. B. Preobrajenski, C. Laubschat, and D. V. Vyalikh, Phys. Rev. B 82, 075415 (2010).

    Article  Google Scholar 

  12. C. Bjelkevig, Z. Mi, J. Xiao, P. A. Dowben, L. Wang, W. N. Mei, and J. A. Kelber, J. Phys.: Condens. Matter 22, 302002 (2010)

    Google Scholar 

  13. S. Das Sarma and E. H. Hwang, Phys. Rev. B 83, 121405 (2011).

    Article  Google Scholar 

  14. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  CAS  Google Scholar 

  15. X. Gonze, R. Stumpf, and M. Scheffler, Phys. Rev. B 44, 8503 (1991).

    Article  CAS  Google Scholar 

  16. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5189 (1976).

    Article  Google Scholar 

  17. Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zett, M. F. Crommie, Y. R. Shen, and F. Wang, Nature 459, 820 (2009).

    Article  CAS  Google Scholar 

  18. E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, J. Phys.: Condens. Matter 22, 175503 (2010).

    Google Scholar 

  19. C. Yelgel and G. P. Srivastava, Appl. Surf. Sci. 258 (2012) (in press).

Download references

Acknowledgments

Celal Yelgel is grateful for financial support from The Republic of Turkey Ministry of National Education through University of Rize in Turkey (Rize Üniversitesi Rektörlügü, Fener Mah. Merkez Kampüs 53100 / RIZE/TÜRKIYE).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yelgel, C., Srivastava, G.P. Energy Band Gap Modification of Graphene Deposited on a Multilayer Hexagonal Boron Nitride Substrate. MRS Online Proceedings Library 1407, 347 (2012). https://doi.org/10.1557/opl.2012.347

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2012.347

Navigation