Skip to main content
Log in

Modeling and Experimental Study of SiH4/GeH4/H2 Gas Discharge for Hydrogenated Silicon Germanium Deposition by RF PECVD

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A one-dimensional model has been developed for radio frequency (RF) glow discharge of SiH4/GeH4/H2 3-gases mixture at a high pressure regime based on the fluid model. The behavior of electrons, neutrals, radicals and ions with corresponding rate constants is described by drift-diffusion equations that are coupled with the Poisson’s equation and solved with an explicit central-difference discretization scheme. The germanium (Ge) content in the deposited film and germane (GeH4) radical fraction in the gas phase are found to decrease as total gas pressure increases in contrast to the increased deposition rate, which are explained by the fact that GeHx-group species are more thoroughly depleted and less promoted by the denser plasma at high pressure compared to SiHx-group species. The multiplied population of electrons and hydrogen atoms in the quadratically denser plasma also boosts secondary reactions which are favorable for SiH3 and GeH3 and consume SiH2 and GeH2 for high order radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yang, A. Banerjee, and S. Guha, Appl. Phy. Lett, 70, 22 (1997).

    Article  Google Scholar 

  2. J. Rath, F. Tichelaar, and R. Schropp, Solar Energy Materials & Solar Cells, 74, 553–560 (2002).

    Article  CAS  Google Scholar 

  3. V. Dalal, M. Leonard, J. Booker, and S.S. Hegedus, IEEE PVSC Proc., 1500 (1986).

  4. G. Ganguly, T. Ikeda, T. Nishimiya, M. Kondo, A. Matsuda, Appl. Phys. Lett., 69, 27 (1996).

    Article  Google Scholar 

  5. J. Meier, R. Torres, R. Platz, S. Dubail, U. Kroll, J. Selvan, N. Vaucher, Hof C., D. Fischer, H. Keppner, A. Shah, K. Ufert, P. Giannoules, and J. Koehler, Mat. Res. Soc. Symp. Proc., 420, 3 (1996).

    Article  CAS  Google Scholar 

  6. S. Hegedus, R. Rocheleau, R. Tullman, D. Albright, N. Saxena, W. Buchanan, K. Schubert, R. Dozier, Prog. in PV: Res. & Appl., 12, 155–176 (2004).

    CAS  Google Scholar 

  7. T. Matsuia, and M. Kondoa, Mat. Res. Soc. Symp. Proc., 1321, 21–32 (2011).

    Google Scholar 

  8. M. J. Kushner, J Appl. Phys., 63, 2532–2551 (1988).

    Article  CAS  Google Scholar 

  9. J. P. Boeuf, Phys. Rev. A, 36, 2782–2792 (1987).

    Article  CAS  Google Scholar 

  10. T.E. Nitschke, and D. Graves, J. Appl. Phys., 76, 5646–5660 (1994).

    Article  CAS  Google Scholar 

  11. E. Amanatides, S. Stamou, and D. Mataras, J. Appl. Phys., 90, 5786–5798 (2001).

    Article  CAS  Google Scholar 

  12. J. R. Doyle, D.A. Doughty, and A. Gallagher, J. Appl. Phys., 71, 4727–4738 (1992).

    Article  CAS  Google Scholar 

  13. H. Simka, M. Hierlemann, M. Utz, and K.F. Jensen, J. Electrochem. Soc., 143, 2646 (1996).

    Article  CAS  Google Scholar 

  14. L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, H. Wagner, Phil. Mag., 77, 1447 (1998).

    Article  CAS  Google Scholar 

  15. C. Smit, R. Swaaij, H. Donker, A. Petit, W. Kessels, M. Sanden, J. Appl. Phys., 94, 3582 (2003).

    Article  CAS  Google Scholar 

  16. L. Zhao, Y. Chae, D. Song, D. Wang, and Z. Yuan, 37 IEEE PVSC Conf. Proc. (2011).

  17. M. Isomura, M. Kondo, A. Matsuda, Sol. Energ. Mat. Sol. Cells, 66, 375–380 (2001).

    Article  CAS  Google Scholar 

  18. P.A. Longeway, R.D. Estes, and H.A. Weaklium, J. Phys. Chem., 88, 73 (1984).

    Article  CAS  Google Scholar 

  19. J. R. Doyle, D. A. Doughty, and A. Gallagher, J. Appl. Phys., 68, 4375 (1990).

    Article  CAS  Google Scholar 

  20. M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, Plas. Sour. Scien. Tech., 12, 205 (2003).

    Article  CAS  Google Scholar 

  21. O. Leroy, G. Gousset, L. Alves, J. Perrin, and J. Jolly, Plas. Sour. Sci.and Technol., 7, 348 (1998).

    Article  CAS  Google Scholar 

  22. M. J. McCaughey, and M. J. Kushner, J. Appl. Phys., 65, 186–195 (1989).

    Article  CAS  Google Scholar 

  23. A. H Mahan, Y. Xua, L. Gedvilas, and D. Williamson, Thin Solid Films, 517, 3532–3535 (2009).

    Article  CAS  Google Scholar 

  24. J. R. Doyle, D.A. Doughty, and A. Gallagher, J. Appl. Phys., 69, 4169–4177 (1991).

    Article  CAS  Google Scholar 

  25. J. R. Doyle, D. A. Doughty, and A. Gallagher, J. Appl. Phys., 71, 4727–4738 (1992).

    Article  CAS  Google Scholar 

  26. V. N. Smirnov, Kinetics and Catalysis, 48, 615–619 (2007).

    Article  CAS  Google Scholar 

  27. M. Hierlemann, H. Sirnka, K. F. Jensen, and M. Utz, J de Phys. IV, 5, C571–C577 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Hunsperger, R. & Hegedus, S. Modeling and Experimental Study of SiH4/GeH4/H2 Gas Discharge for Hydrogenated Silicon Germanium Deposition by RF PECVD. MRS Online Proceedings Library 1426, 403–408 (2012). https://doi.org/10.1557/opl.2012.841

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.841

Navigation