Skip to main content
Log in

Formation and Characterization of Hybrid Nanodots Floating Gate for Optoelectronic Application

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have fabricated a hybrid nanodots floating gate (FG) in which Si quantum dots (QDs) and silicide nanodots (NDs) are stacked with a very thin SiO2 interlayer in order to satisfy both multiple valued capability and charge storage capacity for a sufficient memory window and to open up novel functionality for optoelectronic application. In electron charging and discharging characteristics measured with application of pulsed gate biases to MOS capacitors with a hybrid NDs FG, stepwise changes in the rates for electron injection and emission were revealed with increasing pulse width at room temperature. Also, nMOSFETs with a hybrid NDs FG show unique hysteresis with stepwise changes in the drain current - gate voltage characteristics. The observed characteristics can be interpreted in terms that the electron injection and storage into silicide-NDs proceed through the discrete charged states of Si-QDs. For MOS capacitors with a triple-stacked hybrid NDs FG fabricated by adding another Si-QDs, by subgap light irradiation from the back side of the Si substrate, a distinct infrared optical response in C-V characteristics was detected at room temperature. The result is attributable to the shift of charge centroid in the hybrid NDs FG as a result of transfer of photoexcited electrons from silicide NDs to Si-QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Tiwari, F. Rana, H. Hanafi, H. Hartstein, E. F. Crabbe and K. Chan, Appl. Phys. Lett. 68,1377 (1996).

    Article  CAS  Google Scholar 

  2. A. Kohno, H. Murakami, M. Ikeda, S. Miyazaki and M. Hirose, Jpn. J. Appl. Phys. 40, L721 (2001).

    Article  CAS  Google Scholar 

  3. M. Ikeda, Y. Shimizu, H. Murakami and S. Miyazaki, Jpn. J. Appl. Phys. 42, 4134 (2003).

    Article  CAS  Google Scholar 

  4. Z. Liu, C. Lee, V. Narayanan, G. Pei and E. C. Kan, IEEE Trans. Electron Devices 49, 1606 (2002).

    Article  CAS  Google Scholar 

  5. H. Kirimura, Y. Uraoka, T. Fuyuki, M. Okuda and I. Yamashita, Appl. Phys. Lett., 86, 26210 (2005).

    Article  Google Scholar 

  6. K. Shimanoe, K. Makihara, M. Ikeda and S. Miyazaki, IEICE Trans. Electron, E92-C, 616 (2009).

    Article  Google Scholar 

  7. M. Ikeda, R. Matsumoto, K. Shimanoe, K. Makihara and S. Miyazaki, Extended Abstract of 2008 Int. Conf. on Solid State Devices and Materials (Tukuba, 2008) p.182.

  8. S. Miyazaki, Y. Hamamoto, E. Yoshida, M. Ikeda and M. Hirose, Thin Solid Films, 369, 55 (2000).

    Article  CAS  Google Scholar 

  9. K. Makihara, K. Shimanoe, Y. Kawaguchi, M. Ikeda, S. Higashi and S. Miyazaki, Jpn. J. Appl. Phys. 47, 3099 (2008).

    Article  CAS  Google Scholar 

  10. R. Nishihara, K. Makihara, Y. Kawaguchi, M. Ikeda, H. Murakami, S. Higashi and S. Miyazaki, Mat. Sci. Forum, 561–565, 1213 (2007).

    Article  Google Scholar 

  11. S. Miyazaki, M. Ikeda, K. Makihara, K. Shimanoe and R. Matsumoto, Solid State Phenomena, 154, 95 (2009).

    Article  CAS  Google Scholar 

  12. K. Takeuchi, H. Murakami and S. Miyazaki, Proc. of ECS Int. Semiconductor Technology Conf., (Tokyo, 2002) p. 1.

  13. M. Ikeda, K. Shimanoe, R. Matsumoto, K. Makihara and S. Miyazaki, Extended Abstract of Int. Meeting for Future Electron Devices, Kansai (2008, Osaka) p. 43.

  14. S. Miyazaki, K. Makihara and M. Ikeda, Thin Solid Films 517, 41 (2008).

    Article  CAS  Google Scholar 

  15. S. Miyazaki, M. Ikeda and K. Makihara, ECS Trans. 11(6), 233 (2007).

    Article  CAS  Google Scholar 

  16. S. Miyazaki, K. Makihara and M. Ikeda, ECS Trans. 25(7), 433 (2009).

    Article  CAS  Google Scholar 

  17. N. Morisawa, M. Ikeda, S. Nakanishi, A. Kawanami, K. Makihara and S. Miyazaki, Jpn. J. Appl. Phys. 49, 04DJ04 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazaki, S. Formation and Characterization of Hybrid Nanodots Floating Gate for Optoelectronic Application. MRS Online Proceedings Library 1510, 2 (2013). https://doi.org/10.1557/opl.2013.272

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2013.272

Navigation