Skip to main content
Log in

Effect of the element ratio in the doping component on the properties of 0.975(0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3)–0.025Bix/3Mgy/3Nbz/3O3 ceramics

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new series of ternary perovskite 0.975(0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3)–0.025Bix/3Mgy/3Nbz/3O3 (BNT–BKT–BMN, BMN‐xyz) ceramics were designed and synthesized. The effect of the element ratio in the doping component BMN on the strain, ferroelectric, piezoelectric, and dielectric properties of the BNT–BKT matrix were studied. The BMN‐430 composition without Nb element exhibits the typical features of non‐ergodic relaxor, which is characterized by a higher piezoelectric coefficient d33 and a butterfly‐shaped strain curve with negative strain. The introduction of trace Nb can significantly enhance the ergodicity of the system, reflecting in the high positive strain response and strain coefficient \(( {d_{33}^* > 750\;{\rm pm/V}} )\) of BMN‐321 composition. In contrast, there is no significant difference in the properties between the presence and absence of Mg element. The temperature‐dependent electrical behaviors of BMN‐xyz ceramics were analyzed based on impedance spectroscopy. This study may be helpful to the design of the chemical modification strategy for the BNT‐based relaxor ferroelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Similar content being viewed by others

References

  1. G. Smolensky: New ferroelectrics of complex composition. IV. Sov. Phys. Solid State 2, 2651 (1961).

    Google Scholar 

  2. T. Takenaka, K‐i. Masruyama, and K. Sakata: (Bi1/2Na1/2)TiO3‐BaTiO3 system for lead‐free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236 (1991).

    Article  CAS  Google Scholar 

  3. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki: Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. 38, 5564 (1999).

    Article  CAS  Google Scholar 

  4. T.R. Shrout and S.J. Zhang: Lead‐free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 19, 113 (2007).

    Article  Google Scholar 

  5. S. Zhang, T.R. Shrout, H. Nagata, Y. Hiruma, and T. Takenaka: Piezoelectric properties in (K0.5Bi0.5)TiO3‐(Na0.5Bi0.5)TiO3‐BaTiO3 lead‐free ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 910 (2007).

    Article  Google Scholar 

  6. S‐T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rödel: Giant strain in lead‐free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906 (2007).

    Article  Google Scholar 

  7. R. Zuo, C. Ye, X. Fang, and J. Li: Tantalum doped 0.94Bi0.5Na0.5TiO3–0.06 BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28, 871 (2008).

    Article  CAS  Google Scholar 

  8. S.T. Zhang, A.B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, and D. Damjanovic: High‐strain lead‐free antiferroelectric electrostrictors. Adv. Mater. 21, 4716 (2009).

    Article  CAS  Google Scholar 

  9. W. Jo, T. Granzow, E. Aulbach, J. Rödel, and D. Damjanovic: Origin of the large strain response in (K0.5Na0.5)NbO3‐modified (Bi0.5Na0.5)TiO3–BaTiO3 lead‐free piezoceramics. J. Appl. Phys. 105, 094102 (2009).

    Article  Google Scholar 

  10. H.J. Lee, S.O. Ural, L. Chen, K. Uchino, and S. Zhang: High power characteristics of lead‐free piezoelectric ceramics. J. Am. Ceram. Soc. 95, 3383 (2012).

    Article  CAS  Google Scholar 

  11. K. Wang, A. Hussain, W. Jo, and J. Rödel: Temperature‐dependent properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–SrTiO3 lead‐free piezoceramics. J. Am. Ceram. Soc. 95, 2241 (2012).

    Article  CAS  Google Scholar 

  12. L. Liu, M. Knapp, H. Ehrenberg, L. Fang, H. Fan, L.A. Schmitt, H. Fuess, M. Hoelzel, H. Dammak, and M.P. Thi: Average vs. local structure and composition‐property phase diagram of K0.5Na0.5NbO3‐Bi½Na½TiO3 system. J. Eur. Ceram. Soc. 37, 1387 (2017).

    Article  CAS  Google Scholar 

  13. H. Qi and R. Zuo: Giant electrostrictive strain in (Bi0.5Na0.5)TiO3–NaNbO3 lead‐free relaxor antiferroelectrics featuring temperature and frequency stability. J. Mater. Chem. A 8, 2369 (2020).

    Article  CAS  Google Scholar 

  14. W. Jia, Y. Hou, M. Zheng, Y. Xu, X. Yu, M. Zhu, K. Yang, H. Cheng, S. Sun, and J. Xing: Superior temperature‐stable dielectrics for MLCCs based on Bi0.5Na0.5TiO3‐NaNbO3 system modified by CaZrO3. J. Am. Ceram. Soc. 101, 3468 (2018).

    Article  CAS  Google Scholar 

  15. X. Zhou, H. Qi, Z. Yan, G. Xue, H. Luo, and D. Zhang: Superior thermal stability of high energy density and power density in domain‐engineered Bi0.5Na0.5TiO3–NaTaO3 relaxor ferroelectrics. ACS Appl. Mater. Interfaces 11, 43107 (2019).

    Article  CAS  Google Scholar 

  16. C. Zhu, Z. Cai, B. Luo, L. Guo, L. Li, and X. Wang: High temperature lead‐free BNT‐based ceramics with stable energy storage and dielectric properties. J. Mater. Chem. A 8, 683 (2020).

    Article  CAS  Google Scholar 

  17. L. Zhang, Y. Pu, M. Chen, T. Wei, and X. Peng: Novel Na0.5Bi0.5TiO3 based, lead‐free energy storage ceramics with high power and energy density and excellent high‐temperature stability. Chem. Eng. J. 383, 123154 (2020).

    Article  CAS  Google Scholar 

  18. X. Qiao, F. Zhang, D. Wu, B. Chen, X. Zhao, Z. Peng, X. Ren, P. Liang, X. Chao, and Z. Yang: Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3‐based relaxor ferroelectric ceramics. Chem. Eng. J. 388, 124158 (2020).

    Article  CAS  Google Scholar 

  19. F. Yan, K. Huang, T. Jiang, X. Zhou, Y. Shi, G. Ge, B. Shen, and J. Zhai: Significantly enhanced energy storage density and efficiency of BNT‐based perovskite ceramics via A‐site defect engineering. Energy Storage Mater. 30, 392–400 (2020).

    Article  Google Scholar 

  20. M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney, S.N. Cook, J.A. Kilner, and D.C. Sinclair: A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat. Mater. 13, 31 (2014).

    Article  CAS  Google Scholar 

  21. J. Zang, M. Li, D.C. Sinclair, W. Jo, and J. Rödel: Impedance spectroscopy of (Bi1/2Na1/2)TiO3–BaTiO3 ceramics modified with (K0.5Na0.5)NbO3. J. Am. Ceram. Soc. 97, 1523 (2014).

    Article  CAS  Google Scholar 

  22. M. Li, H. Zhang, S.N. Cook, L. Li, J.A. Kilner, I.M. Reaney, and D.C. Sinclair: Dramatic influence of A‐site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3. Chem. Mater. 27, 629 (2015).

    Article  CAS  Google Scholar 

  23. F. Yang, M. Li, L. Li, P. Wu, E. Pradal‐Velázquez, and D. Sinclair: Defect chemistry and electrical properties of sodium bismuth titanate perovskite. J. Mater. Chem. A 6, 5243 (2018).

    Article  CAS  Google Scholar 

  24. X. Liu, Y. Zhao, J. Shi, H. Du, X. Xu, H. Lu, J. Che, and X. Li: Improvement of dielectric and ferroelectric properties in bismuth sodium titanate based relaxors through Bi non‐stoichiometry. J. Alloys Compd. 799, 231 (2019).

    Article  CAS  Google Scholar 

  25. P. Ren, J. Wang, J. He, Y. Wang, H. Yuan, Y. Hao, T. Frömling, Y. Wan, Y. Shi, and G. Zhao: Ultrawide temperature range with stable permittivity and low dielectric loss in (1−x)[0.90Na0.5Bi0.5TiO3‐0.10BiAlO3]‐xNaNbO3 system. Adv. Electron. Mater. 6, 1901429 (2020).

    Article  CAS  Google Scholar 

  26. P. Ren, Y. Wang, A. Waidha, O. Clemens, and K. Lalitha: Compositionally driven relaxor to ferroelectric crossover in (1−x) Na0.5Bi0.5TiO3–xBiFeO3 (0≤x≤0.60). J. Mater. Chem. C 8, 8613–8621 (2020).

    Article  CAS  Google Scholar 

  27. X. Ren: Large electric‐field‐induced strain in ferroelectric crystals by point‐defect‐mediated reversible domain switching. Nat. Mater. 3, 91 (2004).

    Article  CAS  Google Scholar 

  28. W. Liu and X. Ren: Large piezoelectric effect in Pb‐free ceramics. Phys. Rev. Lett. 103, 257602 (2009).

    Article  Google Scholar 

  29. S.O. Leontsev and R.E. Eitel: Progress in engineering high strain lead‐free piezoelectric ceramics. Sci. Technol. Adv. Mater. 11, 044302 (2010).

    Article  Google Scholar 

  30. P. Ren, J. He, X. Wang, M. Sun, H. Zhang, and G. Zhao: Colossal permittivity in niobium doped BaTiO3 ceramics annealed in N2. Scr. Mater. 146, 110 (2018).

    Article  CAS  Google Scholar 

  31. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, and X. Wang: Giant piezoelectricity in potassium‐sodium niobate lead‐free ceramics. J. Am. Chem. Soc. 136, 2905 (2014).

    Article  CAS  Google Scholar 

  32. J. Wu, D. Xiao, and J. Zhu: Potassium–sodium niobate lead‐free piezoelectric materials: Past, present, and future of phase boundaries. Chem. Rev. 115, 2559 (2015).

    Article  CAS  Google Scholar 

  33. T. Zheng, J. Wu, D. Xiao, J. Zhu, X. Wang, and X. Lou: Potassium–sodium niobate lead‐free ceramics: Modified strain as well as piezoelectricity. J. Mater. Chem. A 3, 1868 (2015).

    Article  CAS  Google Scholar 

  34. P. Ren, Z. Liu, M. Wei, L. Liu, J. Shi, F. Yan, H. Fan, and G. Zhao: Temperature‐insensitive dielectric and piezoelectric properties in (1‐x)K0.5Na0.5Nb0.997Cu0.0075O3‐xSrZrO3 ceramics. J. Eur. Ceram. Soc. 37, 2091 (2017).

    Article  CAS  Google Scholar 

  35. J. Hao, W. Li, J. Zhai, and H. Chen: Progress in high‐strain perovskite piezoelectric ceramics. Mater. Sci. Eng. R: Rep. 135, 1 (2019).

    Article  Google Scholar 

  36. J. Hao, W. Bai, W. Li, B. Shen, and J. Zhai: Phase transitions, relaxor behavior, and large strain response in LiNbO3‐modified Bi0.5(Na0.80K0.20)0.5TiO3 lead‐free piezoceramics. J. Appl. Phys. 114, 044103 (2013).

    Article  Google Scholar 

  37. J. Hao, B. Shen, J. Zhai, and H. Chen: Phase transitional behavior and electric field‐induced large strain in alkali niobate‐modified Bi0.5(Na0.80K0.20)0.5TiO3 lead‐free piezoceramics. J. Appl. Phys. 115, 034101 (2014).

    Article  Google Scholar 

  38. J. Hao, B. Shen, J. Zhai, and H. Chen: Effect of BiMeO3 on the phase structure, ferroelectric stability, and properties of lead‐free Bi0.5(Na0.80K0.20)0.5TiO3 ceramics. J. Am. Ceram. Soc. 97, 1776 (2014).

    Article  CAS  Google Scholar 

  39. J. Shi, H. Fan, X. Liu, and A.J. Bell: Large electrostrictive strain in (Bi0.5Na0.5) TiO3–BaTiO3–(Sr0.7Bi0.2)TiO3 solid solutions. J. Am. Ceram. Soc. 97, 848 (2014).

    Article  CAS  Google Scholar 

  40. J. Shi, H. Fan, X. Liu, and Q. Li: Giant strain response and structure evolution in (Bi0.5Na0.5)0.945−x (Bi0.2Sr0.7□ 0.1) xBa0.055TiO3 ceramics. J. Eur. Ceram. Soc. 34, 3675 (2014).

    Article  CAS  Google Scholar 

  41. L. Liu, D. Shi, M. Knapp, H. Ehrenberg, L. Fang, and J. Chen: Large strain response based on relaxor‐antiferroelectric coherence in Bi0.5Na0.5TiO3–SrTiO3–(K0.5Na0.5)NbO3 solid solutions. J. Appl. Phys. 116, 184104 (2014).

    Article  Google Scholar 

  42. G. Dong, H. Fan, J. Shi, and M. Li: Composition‐and temperature‐dependent large strain in (1−x)(0.8Bi0.5Na0.5TiO3–0.2Bi0.5K0.5TiO3)–xNaNbO3 ceramics. J. Am. Ceram. Soc. 98, 1150 (2015).

    Article  CAS  Google Scholar 

  43. G. Dong, H. Fan, J. Shi, and Q. Li: Large strain response with low driving field in Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3–Bi (Mg2/3Nb1/3)O3 ceramics. J. Am. Ceram. Soc. 101, 3947 (2018).

    Article  CAS  Google Scholar 

  44. X. Liu, S. Xue, F. Li, J. Ma, J. Zhai, B. Shen, F. Wang, X. Zhao, and H. Yan: Giant electrostrain accompanying structural evolution in lead‐free NBT‐based piezoceramics. J. Mater. Chem. C 6, 814 (2018).

    Article  CAS  Google Scholar 

  45. P. Ren, Z. Liu, H. Liu, S. Sun, Y. Wan, C. Long, J. Shi, J. Chen, and G. Zhao: Large electrostrain and structural evolution in (1‐x)[0.94Bi0.5Na0.5TiO3‐0.06 BaTiO3]‐xAgNbO3 ceramics. J. Eur. Ceram. Soc. 39, 994 (2019).

    Article  CAS  Google Scholar 

  46. X. Zhou, Z. Yan, H. Qi, L. Wang, S. Wang, Y. Wang, C. Jiang, H. Luo, and D. Zhang: Electrical properties and relaxor phase evolution of Nb‐Modified Bi0.5Na0.5TiO3‐Bi0.5K0.5TiO3‐SrTiO3 lead‐free ceramics. J. Eur. Ceram. Soc. 39, 2310 (2019).

    Article  CAS  Google Scholar 

  47. A.R. West, D.C. Sinclair, and N. Hirose: Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. J. Electroceram. 1, 65 (1997).

    Article  CAS  Google Scholar 

  48. N. Masó and A.R. West: Electrical properties of Ca‐doped BiFeO3 ceramics: From p‐type semiconduction to oxide‐ion conduction. Chem. Mater. 24, 2127 (2012).

    Article  Google Scholar 

  49. F. Yang, L. Li, P. Wu, E. Pradal‐Velázquez, H.K. Pearce, and D.C. Sinclair: Use of the time constant related parameter fmax to calculate the activation energy of bulk conduction in ferroelectrics. J. Mater. Chem. C 6, 9258 (2018).

    Article  CAS  Google Scholar 

  50. S. Steiner, I‐T. Seo, P. Ren, M. Li, D.J. Keeble, and T. Frömling: The effect of Fe‐acceptor doping on the electrical properties of Na1/2Bi1/2TiO3 and 0.94 (Na1/2Bi1/2)TiO3–0.06 BaTiO3. J. Am. Ceram. Soc. 102, 5295 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation (51672220 and 51902258), the Fundamental Research Funds for the Central Universities (3102019GHXM002), the State Key Laboratory of Solidification Processing Project (2019‐TZ‐04) of China, the China Postdoctoral Science Foundation (2019M653729), the Natural Science Foundation of Shaanxi Province (2019JQ‐621), and the Shaanxi Province Postdoctoral Science Foundation (2017BSHEDZZ07). We would also like to thank the Chinese Scholarship Council (CSC) and the Analytical & Testing Center of Northwestern Polytechnical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhi Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, G., Fan, H. & Jia, Y. Effect of the element ratio in the doping component on the properties of 0.975(0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3)–0.025Bix/3Mgy/3Nbz/3O3 ceramics. Journal of Materials Research 36, 1114–1124 (2021). https://doi.org/10.1557/s43578-020-00075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00075-4

Keywords

Navigation