Skip to main content
Log in

A Method for Increasing the Fatigue Life of Pump Rods

  • RELIABILITY, STRENGTH, AND WEAR RESISTANCE OF MACHINES AND STRUCTURES
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

A method for increasing the fatigue life of pump rods and similar elongated cylindrical products is considered. The method consists in creating normal compressing residual stresses in the near-surface region of the product; the stresses are created by sequential elastoplastic deformation: first, by extension, then, when fixed under axial strain, by torsion. It is shown how the residual stresses are generated in the bulk product during its hardening by combined extension and torsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Adonin, A.N., Dobycha nefti shtangovymi nasosami (Extraction of Oil by Sucker Rod Pumps), Moscow: Nedra, 1979.

  2. GOST (State Standard) R 51161–2002: Sucker Rods, Wellhead Rods, and Couplings for Them, 2002.

  3. Ivanovskii, V.N., Why do rod columns break?, Territ. Neftegaz, 2007, no. 3, p. 34.

  4. Gutman, E.M. and Abdulin, I.G., The mechanism of corrosion fatigue of deep pumping rods, Korroziya Zashch. Neftegazov. Prom-sti., 1978, no. 4, p. 9.

  5. Gallyamov, M.N., et al., Regularities of sucker rod breaks according to the data of the Ishimbay field, Neft. Khoz., 1970, no. 1, p. 54.

  6. Pavlov, V.F., Bukatyi, A.S., and Semenova, O.Yu., Predicting the fatigue limit of surface-hardened parts with stress concentrators, Russ. Eng. Res., 2019, vol. 39, pp. 283–287.

    Article  Google Scholar 

  7. Bukatyi, A.S., Finite element modeling and study of residual stresses and deformations of parts after shot peening, Vestn. Mashinostr., 2016, no. 6, p. 52.

  8. Pavlov, V.F., Kirpichev, V.A., and Vakulyuk, V.S., Prognozirovanie soprotivleniya ustalosti poverkhnostno uprochnennykh detalei po ostatochnym napryazheniyam (Prediction of Fatigue Resistance of Surface-Hardened Parts Based on Residual Stresses), Samara: SNTs RAN, 2012.

  9. Radchenko, V.P., Afanas’eva, O.S., and Glebov, V.E., Effect of surface plastic hardening technology, residual stresses, and boundary conditions on the buckling of the beam, Vestn. Permsk. Nats. Issled. Polit. Univ., Mekh., 2020, no. 1, p. 87. https://doi.org/10.15593/perm.mech/2020.1.07

  10. Radchenko, V.P., Pavlov, V.F., and Saushkin, M.N., Mathematical modeling of the stress-strain state in surface-hardened bushings taking into account residual tangential stresses, Vestn. Permsk. Nats. Issled. Politekh. Univ., Mekh., 2019, no. 1, p. 138. https://doi.org/10.15593/perm.mech/2019.1.12

  11. Soady, K.A., Life assessment methodologies incorporating shot peening process effects: Mechanistic consideration of residual stresses and strain hardening. 1. Effect of shot peening on fatigue resistance, Mater. Sci. Technol., 2013, vol. 29, no. 6, p. 637. https://doi.org/10.1179/1743284713Y.0000000222

    Article  Google Scholar 

  12. Musinski, W.D. and McDowell, D.L., On the eigenstrain application of shot peened residual stresses within a crystal plasticity framework: Application to Ni-base superalloy speciments, Int. J. Mech. Sci., 2015, vol. 100, p. 195. https://doi.org/10.1016/j.ijmecsci.2015.06.020

    Article  Google Scholar 

  13. Gallitelli, D., et al., Simulation of shot peening: From process parameters to residual stress fields in a structure, C. R. Mec., 2016, vol. 344, nos. 4–5, p. 355. https://doi.org/10.1016/j.crme.2016.02.006

    Article  Google Scholar 

  14. Xie, L., et al., Numerical analysis and experimental validation on residual stress distribution of titanium matrix composite after shot peening treatment, Mech. Mat., 2016, vol. 99, p. 2. https://doi.org/10.1016/j.mechmat.2016.05.005

    Article  Google Scholar 

  15. Terres, M.A., Laalai, N., and Sidhom, H., Effect of nitriding and shot-peening on the fatigue behavior of 42CrMo4 steel: Experimental analysis and predictive approach, Mater. Des., 2012, vol. 35, p. 741. https://doi.org/10.1016/j.matdes.2011.09.055

    Article  Google Scholar 

  16. Terent’ev, V.F. and Korableva, S.A., Ustalost’ metallov (Fatigue of Metals), Moscow: Nauka, 2015.

  17. Oleinik, N.V., Magdenko, A.N., and Sklyar, S.P., Soprotivlenie ustalosti materialov i detalei mashin v korrozionnykh sredakh (Fatigue Resistance of Materials and Machine Parts in Corrosive Environments), Kiev: Naukova Dumka, 1987.

  18. Vasserman, N.N., Vil’deman, V.E., and Kryukov, A.A., Investigation of patterns of elastoplastic deformation of 15Kh2GMF steel in a complex stress state, Vestn. Povolzhsk. Gos. Tekh. Univ., Mekh., 2010, no. 2, p. 34.

  19. Kryukov, A.A., Kalugin, V.E., and Vasserman, N.N., Modeling of elastoplastic deformation of structural steel under complex stress state, Vestn. Samar. Gos. Tekh. Univ., Ser. Tekh. Nauki, 2011, no. 3, p. 122.

  20. Kryukov, A.A., Technology of hardening of long cylindrical products by joint stretching and reversible torsion, Metalloobrabotka, 2015, no. 3, p. 11.

  21. Kryukov, A.A., Kalugin, V.E., and Sirotenko, L.D., Increasing corrosion-fatigue strength of long cylindrical products as a result of preliminary strengthening by joint stretching and twisting, Res. J. Pharm. Biol. Chem. Sci., 2016, vol. 7, no. 3, p. 2434. http://rjpbcs.com/pdf/2016_7(3)/[298].pdf.

    Google Scholar 

  22. Kryukov, A.A., Investigation of the behavior of cylindrical bodies under conditions of joint tension and torsion under disproportionate loading, Vestn. Permsk. Nats. Issled. Politekh. Univ., Mekh., 2019, no. 1, p. 64. https://doi.org/10.15593/perm.mech/2019.1.06

  23. Nadymov, A.N., Stolbov, V.Yu., and Trusov, P.V., Mathematical modeling of the recovery of sucker rods, Sib. Zh. Ind. Mat., 2002, vol. 5, no. 1, p. 120.

    MATH  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 19-01-00555 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kryukov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryukov, A.A., Wildemann, V.E. A Method for Increasing the Fatigue Life of Pump Rods. J. Mach. Manuf. Reliab. 49, 932–937 (2020). https://doi.org/10.3103/S1052618820110102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618820110102

Keywords:

Navigation