Skip to main content

Particle Physics Without Accelerators (selected topics)

  • Chapter
Particle Physics

Part of the book series: NATO ASI Series ((ASIB,volume 150))

  • 105 Accesses

Abstract

Particle physics without accelerators covers a wide variety of subjects. Only the following three main topics are discussed in this report :

  1. 1)

    High energy cosmic ray experiments, with a particular emphasis on the observations related to Cygnus X3 and their implications.

  2. 2)

    Neutrino physics : Majorana or Dirac neutrinos, neutrino masses, neutrino oscillations.

  3. 3)

    Constancy of the coupling constants over a long period of time based on the discovery of a fossil nuclear reactor in Gabon.

It is relatively easy to define what is the study of elementary particles with accelerators. An accelerator is any device which by means of intense electric fields, accelerates charged particle beams. The process starts from a hydrogen, deuterium, or helium bottle (or heavier element). Atoms are stripped by means of an electric field, and then acceleration of either the electrons or the stripped atoms can take place. A typical experiment will be the study of the collisions between beam particles and a specific target. It is much more complicated to tell what is exactly the study of elementary particles without accelerator : all what we know about the experiments is that they do not use accelerators, but obviously this is not enough since it has to deal with elementary particle physics. So the discovery of new particles without accelerators, mass measurements, branching ratios like double beta decay belong to this field. Nobody will object to include also the study of the properties of the interactions between elementary particles : quantum number conservation, hints to ultra high energy phenomena which cannot, at least presently, be reached by accelerators.

Particle Physics without accelerators aims for fundamental discoveries. Obviously, except for cosmic ray experiments, this is a very low Q2 physics. Nevertheless this is partly compensated by the fact that one can search for very rare processes by looking during a very long period of time at many elementary particles. In that sense this is a nice complementary way to study elementary particle physics compared to accelerator techniques.

A tentative list of the various topics is given below :

  1. 1.

    Hints for very high energy interactions from cosmic ray experiments

    Search for ultrahigh energy pointlike source of cosmic rays : the possible new physics involved by the recent discoveries concerning Cygnus X3.

  2. 2.

    Search for new particles : axions, monopoles and quarks.

  3. 3.

    Neutrino physics and weak interactions

  4. 4.

    Experiments related to Grand Unified Theories :

    baryon number conservation (proton lifetime.

    neutron antineutron oscillations)

    electric dipole moment of the neutron (involves CP conservation).

  5. 5.

    Constancy of the coupling constants over a long period of time (fossil reactor).

It can be argued whether or not we should include quantum mechanic tests (Bell inequalities and Aspect experiments), or general relativity tests (search for gravitational waves for instance ...) and quantum electrodynamics related experiments (g-2 for the electron).

In the two lectures given at Cargese 85, I had to choose between all these topics. Only points 1, 3 and 5 were covered and will be presented here. A more detailed report which will discuss all the above subjects will be published in Physics Reports together with M. Cribier and J. Rich [1].

This following report is not intended to be complete. Specially, recent experimental results might be missed. The main goals are ly to introduce the subjects and the motivations, to describe in a itical way the present status, and to foresee the main perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Particle Physics without Accelerators, M. Cribier, M. Spiro, J. Rich, to be published in Physics Reports.

    Google Scholar 

  2. A. Bonnetti et al., Nuovo Cimento 10 (1953) 345.

    Article  Google Scholar 

  3. N. Yamdagni, Event Structure in collider and cosmics ray experiments, Physics in Collision (Stockholm, June 82).

    Google Scholar 

  4. G.B. Yodh et al., Phys. Rev. Lett. 28 (1972) 1005.

    Article  ADS  Google Scholar 

  5. M. Bozzo et al., Phys. Lett. 147B (1984) 392.

    ADS  Google Scholar 

  6. G.B. Yodh, Workshop on Elastic and Diftractive Scattering at the Collider and Beyond, Blois (June 1985).

    Google Scholar 

  7. C.M.G. Lattes et al., Phys. Rep. 65 (1980) 151.

    Article  ADS  Google Scholar 

  8. K. Alpgard et al., Phys. Lett. 107B (1981) 315.

    ADS  Google Scholar 

  9. K. Alpgard et al., Phys. Lett. 107B (1981) 310.

    ADS  Google Scholar 

  10. G. Arnison et al., Phys. Lett. 107B (1981) 320.

    ADS  Google Scholar 

  11. M. Banner et al., Phys. Lett. 115B (1982) 59.

    ADS  Google Scholar 

  12. G. Arnison et al., Phys. Lett. 118B (1982) 167.

    ADS  Google Scholar 

  13. M.Banner et al., Phys. Lett. 118B (1982) 203.

    ADS  Google Scholar 

  14. S.I. Nikolovsky et al., Proc. 17th Intern. Cosmic Ray Conf. (Plovdiv, 1977)

    Google Scholar 

  15. V.I. Yakovlev et al., Proc. 17th Intern. Cosmic Ray Conf. (Plovdiv, 1977).

    Google Scholar 

  16. K. Alpgard et al., Phys. Lett. 115B (1982) 71.

    ADS  Google Scholar 

  17. G. Arnison et al., Phys. Lett. 122B (1983) 189.

    ADS  Google Scholar 

  18. J.M. Dickey, Astrophysical Journal 273 (1983) 71.

    Article  ADS  Google Scholar 

  19. K.O. Mason et al., Astrophysical Journal 207 (1976) 78.

    Article  ADS  Google Scholar 

  20. M. Van der Klis and J.M. Bonnet-Bidaud, Astronomy and Astrophysics 95 (1981) L5.

    ADS  Google Scholar 

  21. R.C. Lamb et al., Astrophysical J. 212 (1977) L63.

    Article  ADS  Google Scholar 

  22. COS-B Coll., paper presented at the 19th Int. Cosmic Ray Conf., La Jolla (USA), August 1985.

    Google Scholar 

  23. Yu.I. Nespor et al., Astrophysics and Space Science 61 (1979) 349.

    Article  ADS  Google Scholar 

  24. R.C. Lamb et al., Nature 296 (1982) 543.

    Article  ADS  Google Scholar 

  25. S. Danaher et al., Nature 289 (1981) 568.

    Article  ADS  Google Scholar 

  26. M. Samorski et al., Astrophysical Journal 268 (1983) L17.

    Article  ADS  Google Scholar 

  27. J. Lloyd-Evans et al., Nature 305 (1983) 784.

    Article  ADS  Google Scholar 

  28. M.L. Marshak et al., Phys. Rev. Lett. 54 (1985) 2079.

    Article  ADS  Google Scholar 

  29. G. Battistoni et al., Phys. Lett. 155B (1985) 465.

    ADS  Google Scholar 

  30. Aachen-Orsay-Palaiseau-Saclay-Wuppertal Collaboration. Paper presented at the 19th Int. Cosmic Ray Conf., La Jolla (USA) (August 1985); G. Chardin, private communication.

    Google Scholar 

  31. M. Samorski et al., Proc. 18th Int. Cosmic Ray Conf., Bangalore, India.

    Google Scholar 

  32. B. Kayser, Comments on Nucl. Phys. 14 (1985) 69.

    Google Scholar 

  33. H. Nishiura, Kyoto University, RIFP-453 (1981)

    Google Scholar 

  34. M. Doi et al., Prog. Theor. Phys. 69 (1983) 602.

    Article  ADS  Google Scholar 

  35. E. Bellotti et al., Phys. Lett. 121B (1983) 72.

    ADS  Google Scholar 

  36. T. Kirsten, Proc. 11th Int. Conf. on Neutrino Phys. and Astrophys., Dortmund (1984) p. 145.

    Google Scholar 

  37. V. Lubimov et al., Proc. 22th Int. Conf. on High Energy Phys. Leipzig (1984), p. 259.

    Google Scholar 

  38. S. Boris, Phys. Lett. 159B (1985) 217.

    ADS  Google Scholar 

  39. E.F. Tretyakov et al., Izv. Akad. Nauk SSSR Ser. Fiz. 40 (1976) 20.

    Google Scholar 

  40. J.W. Petersen, Moriond Workshop on Massive Neutrino in Astrophys. and Particle Physics (1984), p. 261.

    Google Scholar 

  41. J.J. Simpson, Phys. Rev. D23 (1981) 649.

    ADS  Google Scholar 

  42. CERN-COURRIER 25 (1985) 182.

    Google Scholar 

  43. D. Twerenbold et al., SIN, PR-84-07.

    Google Scholar 

  44. J.J. Simpson, Phys. Rev. Lett. 54 (1985) 1891.

    Article  ADS  Google Scholar 

  45. T. Altzitzoglou, Phys. Rev. Lett. 55 (1985) 799.

    Article  ADS  Google Scholar 

  46. J.F. Cavaignac et al., Phys. Lett. 148B (1984) 387.

    ADS  Google Scholar 

  47. K. Gabathuler et al., Phys. Lett. 138B (1984) 449.

    ADS  Google Scholar 

  48. D.H. Perkins, Ann. Rev. of Nucl. Science 34 (1984) 1.

    Article  MathSciNet  ADS  Google Scholar 

  49. J.M. Secco et al., Phys. Rev. Lett. 54 (1985) 2299.

    Article  ADS  Google Scholar 

  50. J.K. Rowley et al., Solar Neutrino and Neut. Astronomy Conference, Homestake (1984) 1.

    Google Scholar 

  51. R. Davis et al., Phys. Rev. Lett. 20 (1968) 1205.

    Article  ADS  Google Scholar 

  52. J.N. Bahcall et al., Review of Modern Physics 54 (1982) 767

    Article  ADS  Google Scholar 

  53. J.N. Bahcall et al., Astrophysical J. 292 (1985) L79.

    Article  ADS  Google Scholar 

  54. E. Schatzman, A. Maeder, Astron. Astrophys. 96 (1981) 1.

    ADS  Google Scholar 

  55. Members of the Collaboration : T. Kirsten (spokesman), W. Hampel, G. Eymann, G. Heusser, J. Kiko, E. Pernicka, B. Povh, M. Schneller, K. Schneider, H. Volk (Heidelberg) -K. Ebert, E. Henrich, R. Schlotz (Karlsruhe) -R.L. Mossbauer (Munchen) -I. Dostrovsky (Rehovot) -M. Cribier, G. Dupont, B. Pichard, J. Rich, M. Spiro, D. Vignaud (Saclay)-G. Berthomieu, E. Schatzman (Nice)-E. Fiorini, E. Bellotti, 0. Cremonesci, C. Liguori, S. Ragazzi, L. Zanotti (Milano)-L. Paoluzi, S. D’Angelo, R. Bernabei, R. Santonico (Roma).

    Google Scholar 

  56. T. Kirsten, “The gallium solar neutrino experiment”, in Proc. of the Resonance Ionization Spectroscopy meeting, Knoxville, Tennessee, April 1984;

    Google Scholar 

  57. W. Hampel, “The gallium solar neutrino detector”, in Solar Neutrinos and neutrino astronomy, Homestake (1984), AIP Conf. Proc. n° 126, p. 162;

    Google Scholar 

  58. D. Vignaud, “The gallium solar neutrino experiment GALLEX”, paper presented at the 5tn Moriond Astrophysics meeting, Les Arcs (1985).

    Google Scholar 

  59. J.M. Irvine, Contemp. Physics 24 (1983) 427.

    Article  ADS  Google Scholar 

  60. See M. Maurette, Ann. Rev. Nucl. Sc. 26 (1976) 319.

    Article  ADS  Google Scholar 

  61. M. Neuilly et al., C. R. Acad. Sci. Paris 275 (1972) 1847.

    Google Scholar 

  62. F.J. Dyson, Rev. Mod. Phys. 51 (1979) 447.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Spiro, M. (1987). Particle Physics Without Accelerators (selected topics). In: Lévy, M., Basdevant, JL., Jacob, M., Speiser, D., Weyers, J., Gastmans, R. (eds) Particle Physics. NATO ASI Series, vol 150. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1877-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1877-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9046-9

  • Online ISBN: 978-1-4613-1877-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics