Skip to main content

Ablation Energy Sources: Principles and Utility in Ablation Without Fluoroscopy

  • Chapter
  • First Online:
Cardiac Electrophysiology Without Fluoroscopy
  • 429 Accesses

Abstract

The development of ablation energy sources has allowed for catheter-based therapy of various arrhythmic substrates. Each energy source differs in its physiology of lesion formation as well as its relative advantages and disadvantages when harnessed for reduced-fluoroscopy ablation. Commonly used and alternative ablation energy sources are surveyed here. Specific considerations when these energy sources are utilized in low- and zero-fluoroscopy scenarios are addressed, and potential strategies that may be employed are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joseph JP, Rajappan K. Radiofrequency ablation of cardiac arrhythmias: past, present and future. QJM. 2012;105:303–14.

    Article  CAS  Google Scholar 

  2. Andrade JG, Rivard L, Macle L. The past, the present, and the future of cardiac arrhythmia ablation. Can J Cardiol. 2014;30:S431–41.

    Article  Google Scholar 

  3. Issa Z. Ablation energy sources. In: Issa ZF, Miller JM, Zipes DP, editors. Clinical arrhythmology and electrophysiology: a companion to Braunwald’s heart disease. 1st ed. Philadelphia, PA: Saunders Elsevier; 2009.

    Google Scholar 

  4. Wittkampf FH, Nakagawa H. RF catheter ablation: lessons on lesions. Pacing Clin Electrophysiol. 2006;29:1285–97.

    Article  Google Scholar 

  5. Cummings JE, Pacifico A, Drago JL, Kilicaslan F, Natale A. Alternative energy sources for the ablation of arrhythmias. Pacing Clin Electrophysiol. 2005;28:434–43.

    Article  Google Scholar 

  6. Dorwarth U, Fiek M, Remp T, et al. Radiofrequency catheter ablation: different cooled and noncooled electrode systems induce specific lesion geometries and adverse effects profiles. Pacing Clin Electrophysiol. 2003;26:1438–45.

    Article  Google Scholar 

  7. Kiss A, Sandorfi G, Nagy-Balo E, Martirosyan M, Csanadi Z. Phased RF ablation: results and concerns. J Atr Fibrillation. 2015;8:1240.

    PubMed  PubMed Central  Google Scholar 

  8. Andrade JG, Dubuc M, Rivard L, et al. Efficacy and safety of atrial fibrillation ablation with phased radiofrequency energy and multielectrode catheters. Heart Rhythm. 2012;9:289–96.

    Article  Google Scholar 

  9. Herrera Siklody C, Deneke T, Hocini M, et al. Incidence of asymptomatic intracranial embolic events after pulmonary vein isolation: comparison of different atrial fibrillation ablation technologies in a multicenter study. J Am Coll Cardiol. 2011;58:681–8.

    Article  Google Scholar 

  10. Gaita F, Leclercq JF, Schumacher B, et al. Incidence of silent cerebral thromboembolic lesions after atrial fibrillation ablation may change according to technology used: comparison of irrigated radiofrequency, multipolar nonirrigated catheter and cryoballoon. J Cardiovasc Electrophysiol. 2011;22:961–8.

    Article  Google Scholar 

  11. Skanes AC, Klein G, Krahn A, Yee R. Cryoablation: potentials and pitfalls. J Cardiovasc Electrophysiol. 2004;15:S28–34.

    Article  Google Scholar 

  12. Manusama R, Timmermans C, Limon F, Philippens S, Crijns HJ, Rodriguez LM. Catheter-based cryoablation permanently cures patients with common atrial flutter. Circulation. 2004;109:1636–9.

    Article  Google Scholar 

  13. Schade A, Krug J, Szollosi AG, El Tarahony M, Deneke T. Pulmonary vein isolation with a novel endoscopic ablation system using laser energy. Expert Rev Cardiovasc Ther. 2012;10:995–1000.

    Article  CAS  Google Scholar 

  14. Filgueiras-Rama D, Merino JL. The future of pulmonary vein isolation—single-shot devices, remote navigation or improving conventional radiofrequency delivery by contact monitoring and lesion characterisation? Arrhythm Electrophysiol Rev. 2013;2:59–64.

    Article  Google Scholar 

  15. Laughner JI, Sulkin MS, Wu Z, Deng CX, Efimov IR. Three potential mechanisms for failure of high intensity focused ultrasound ablation in cardiac tissue. Circ Arrhythm Electrophysiol. 2012;5:409–16.

    Article  Google Scholar 

  16. Neven K, Schmidt B, Metzner A, et al. Fatal end of a safety algorithm for pulmonary vein isolation with use of high-intensity focused ultrasound. Circ Arrhythm Electrophysiol. 2010;3:260–5.

    Article  Google Scholar 

  17. Scaglione M, Ebrille E, Caponi D, et al. Zero-fluoroscopy ablation of accessory pathways in children and adolescents: CARTO3 electroanatomic mapping combined with RF and cryoenergy. Pacing Clin Electrophysiol. 2015;38:675–81.

    Article  Google Scholar 

  18. Patel N. Experience with arctic front advance cryoablation system for paroxysmal atrial fibrillation in an established fluoroless EP lab. EP Lab Digest. 2016;16(3).

    Google Scholar 

  19. Su W, Kowal R, Kowalski M, et al. Best practice guide for cryoballoon ablation in atrial fibrillation: the compilation experience of more than 3000 procedures. Heart Rhythm. 2015;12:1658–66.

    Article  Google Scholar 

  20. Shah DC, Namdar M. Real-time contact force measurement: a key parameter for controlling lesion creation with radiofrequency energy. Circ Arrhythm Electrophysiol. 2015;8:713–21.

    Article  Google Scholar 

  21. Shurrab M, Di Biase L, Briceno DF, et al. Impact of contact force technology on atrial fibrillation ablation: a meta-analysis. J Am Heart Assoc. 2015;4:e002476.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarence Khoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khoo, C. (2019). Ablation Energy Sources: Principles and Utility in Ablation Without Fluoroscopy. In: Proietti, R., Wang, Y., Yao, Y., Zhong, G., Lin Wu, S., Ayala-Paredes, F. (eds) Cardiac Electrophysiology Without Fluoroscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-16992-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16992-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16991-6

  • Online ISBN: 978-3-030-16992-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics