Skip to main content

Performing DVC at the Voxel Scale

  • Conference paper
  • First Online:
Advancement of Optical Methods in Experimental Mechanics, Volume 3

Abstract

To analyze the displacement field in volumes imaged by X-ray tomography at several deformation states, a new approach is proposed whereby the displacement is measured down to the voxel scale and determined from a mechanically regularized system using the equilibrium gap method and additional boundary regularizations. It is then possible to compute a displacement vector for each voxel, inducing lower residuals (in terms of experimental data). As representative reconstructed volumes lead to large numbers of degrees of freedom, a dedicated GPU computational strategy has been developed and implemented. A set of volumes of size 100×170×256 voxels (i.e., more than 13 million kinematic unknowns), which corresponds to a part of a sample made of nodular graphite cast iron and tested in tension, is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39:217–226

    Article  Google Scholar 

  2. Bornert M, Chaix J-M, Doumalin P, Dupré J-C, Fournel T, Jeulin D, Maire E, Moreaud M, Moulinec H (2004) Mesure tridimensionnelle de champs cinématiques par imagerie volumique pour l’analyse des matériaux et des structures. Instrum Mes Métrologie 4:43–88

    Google Scholar 

  3. Verhulp E, van Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech 37:1313–1320

    Article  Google Scholar 

  4. Roux S, Hild F, Viot P, Bernard D (2008) Three dimensional image correlation from X-Ray computed tomography of solid foam. Compos Part A 39:1253–1265

    Article  Google Scholar 

  5. Leclerc H, Périé J-N, Roux S, Hild F (2011) Voxel-scale digital volume correlation. Exp Mech 51:479–490

    Article  Google Scholar 

  6. Asmara RA, Hariadi M (2009) Accelerating phase based motion estimation with hierarchical search technique using parallel threading in graphical processing unit (GPU). Int J Comput Sci Netw Secur 9:140–146

    Google Scholar 

  7. Leclerc H, Périé J-N, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical properties. In: Gagalowicz A, Philips W (eds) Mirage. Springer, Berlin, pp 161–171

    Google Scholar 

  8. Marzat J, Dumortier Y, Ducrot A (2009) Real-time dense and accurate parallel optical flow using CUDA. In: Proceedings WSCG 2009, University of West Bohemia, Plzeň, Czech Republic, pp 105–111

    Google Scholar 

  9. Mitzel D, Pock T, Schoenemann T, Cremers D (2009) Video super resolution using duality based TV-L1 optical flow. Lect Notes Comput Sci 5748:432–441

    Article  MathSciNet  Google Scholar 

  10. Gates M, Lambros J, Heath M (2012) High-performance digital volume correlation for experimental mechanics applications. In: Proceedings SEM XII, Costa Mesa

    Google Scholar 

  11. Leclerc H, Périé J-N, Hild F, Roux S (2012) Digital volume correlation: what are the limits to the spatial resolution? Mech Indust 13(6): 361–371

    Google Scholar 

  12. Claire D, Hild F, Roux S (2004) A finite element formulation to identify damage fields: the equilibrium gap method. Int J Numer Meth Eng 61:189–208

    Article  MATH  Google Scholar 

  13. Tomičević Z, Hild F, Roux S (2013) Mechanics-aided digital image correlation. J Strain Anal (in press). doi: 10.1177/0309324713482457

    Google Scholar 

  14. Réthoré J, Limodin N, Buffière J-Y, Hild F, Ludwig W, Roux S (2011) Digital volume correlation analyses of synchrotron tomographic images. J Strain Anal 46:683–695

    Article  Google Scholar 

Download references

Acknowledgments

The support of the French Agence Nationale de la Recherche through ‘RUPXCUBE’ project (ANR-09-BLAN-0009-01) is acknowledged. The tomographic images were obtained at ESRF through a grant for the experiment MA-501 on beamline ID 19. The scans used herein were obtained with the help of Drs. J.-Y. Buffière, A. Gravouil, N. Limodin, W. Ludwig, and J. Rannou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hild .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Hild, F., Leclerc, H., Roux, S. (2014). Performing DVC at the Voxel Scale. In: Jin, H., Sciammarella, C., Yoshida, S., Lamberti, L. (eds) Advancement of Optical Methods in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-00768-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00768-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00767-0

  • Online ISBN: 978-3-319-00768-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics