Skip to main content

Liana Diversity and the Future of Tropical Forests

  • Chapter
Biodiversity of Lianas

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 5))

Abstract

Lianas contribute substantially to the total species richness of tropical forests, accounting for up to a quarter of the woody plant diversity. However, liana diversity is intrinsically linked with forest condition and consequently is altered by human-induced forest modifications. Multiple environmental drivers including forest fragmentation, logging and climate change are impacting tropical forests; the extent and intensity of their effects will likely define future global liana diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abernethy KA, Coad L, Taylor G, Lee ME, Maisels F (2013) Extent and ecological consequences of hunting in Central African rainforests in the twenty-first century. Philos Trans R Soc B Biol Sci 368:1625. doi:10.1098/rstb.2012.0303

    Google Scholar 

  • Achard F, Eva HD, Stibig H-J, Mayaux P, Gallego J, Richards T, Malingreau J-P (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297(5583):999–1002

    CAS  PubMed  Google Scholar 

  • Addo-Fordjour P, Obeng S, Addo MG, Akyeampong S (2009) Effects of human disturbances and plant invasion on liana community structure and relationship with trees in the Tinte Bepo forest reserve, Ghana. For Ecol Manage 258:728–734. doi:10.1016/j.foreco.2009.05.010

    Google Scholar 

  • Addo-Fordjour P, Rahmad ZB, Amui J, Pinto C, Dwomoh M (2012a) Patterns of liana community diversity and structure in a tropical rainforest reserve, Ghana: effects of human disturbance. Afr J Ecol 51:217–227. doi:10.1111/aje.12025

    Google Scholar 

  • Addo-Fordjour P, Rahmad ZB, Shahrul AMS (2012b) Effects of human disturbance on liana community diversity and structure in a tropical rainforest, Malaysia: implication for conservation. J Plant Ecol 5(4):391–399. doi:10.1093/jpe/rts012

    Google Scholar 

  • Addo-Fordjour P, El Duah P, Agbesi DKK (2013) Factors influencing liana species richness and structure following anthropogenic disturbance in a tropical forest, Ghana. ISRN Forestry 2013:11. doi:10.1155/2013/920370

    Google Scholar 

  • Aizen MA, Feinsinger P (1994) Forest fragmentation, pollination, and plant reproduction in a Chaco Dry Forest, Argentina. Ecology 75(2):330–351. doi:10.2307/1939538

    Google Scholar 

  • Allen BP, Sharitz RR, Goebel PC (2005) Twelve years post-hurricane liana dynamics in an old-growth southeastern floodplain forest. For Ecol Manage 218(1–3):259–269. doi:10.1016/j.foreco.2005.08.021

    Google Scholar 

  • Alvira D, Putz FE, Fredericksen TS (2004) Liana loads and post-logging liana densities after liana cutting in a lowland forest in Bolivia. For Ecol Manage 190(1):73–86. doi:10.1016/j.foreco.2003.10.007

    Google Scholar 

  • Anbarashan M, Parthasarathy N (2013) Diversity and ecology of lianas in tropical dry evergreen forests on the Coromandel Coast of India under various disturbance regimes. Flora – morphology, distribution, functional ecology of plants 208(1):22–32. doi:10.1016/j.flora.2012.12.004

  • Ansell FA, Edwards DP, Hamer KC (2011) Rehabilitation of logged rain forests: avifaunal composition, habitat structure, and implications for biodiversity-friendly REDD+. Biotropica 43(4):504–511. doi:10.1111/j.1744-7429.2010.00725.x

    Google Scholar 

  • Arroyo-Rodriguez V, Toledo-Aceves T (2009) Impact of landscape spatial pattern on liana communities in tropical rainforests at Los Tuxtlas, Mexico. Appl Veg Sci 12(3):340–349

    Google Scholar 

  • Asensio N, Cristobal-Azkarate J, Dias PAD, Vea JJ, Rodriguez-Luna E (2007) Foraging habits of Alouatta palliata mexicana in three forest fragments. Folia Primatol 78(3):141–153. doi:10.1159/000099136

    PubMed  Google Scholar 

  • Asner GP, Martin RE (2012) Contrasting leaf chemical traits in tropical lianas and trees: implications for future forest composition. Ecol Lett 15(9):1001–1007

    PubMed  Google Scholar 

  • Asner GP, Rudel TK, Aide TM, Defries R, Emerson R (2009) A contemporary assessment of change in humid tropical forests. Conserv Biol 23(6):1386–1395. doi:10.1111/j.1523-1739.2009.01333.x

    PubMed  Google Scholar 

  • Australian Tropical Rainforest Plants Edition 6.1 [online version] (2010) Centre for Australian National Biodiversity Research. http://www.anbg.gov.au/cpbr/cd-keys/rfk/index.html

  • Balch JK, Nepstad DC, Curran LM, Brando PM, Portela O, Guilherme P, Reuning-Scherer JD, de Carvalho O (2011) Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. For Ecol Manage 261(1):68–77. doi:10.1016/j.foreco.2010.09.029

    Google Scholar 

  • Balfour DA, Bond WJ (1993) Factors limiting climber distribution and abundance in a southern. Afr For J Ecol 81(1):93–100

    Google Scholar 

  • Benitez-Malvido J, Martinez-Ramos M (2003) Impact of forest fragmentation on understory plant species richness in Amazonia. Conserv Biol 17(2):389–400. doi:10.1046/j.1523-1739.2003.01120.x

    Google Scholar 

  • Bennett E, Eves H, Robinson J, Wilkie D (2002) Why is eating bush meat a biodiversity crisis. Conserv Biol Pract 3:28–29

    Google Scholar 

  • Blaser J, Sarre A, Poore D, Johnson S (2011) Status of tropical forest management 2011, ITTO technical series no 38. ITTO, Yokohama

    Google Scholar 

  • Briant G, Gond V, Laurance SGW (2010) Habitat fragmentation and the desiccation of forest canopies: a case study from eastern Amazonia. Biol Conserv 143(11):2763–2769. doi:http://dx.doi.org/10.1016/j.biocon.2010.07.024

  • Broadbent EN, Asner GP, Keller M, Knapp DE, Oliveira PJC, Silva JN (2008) Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol Conserv 141(7):1745–1757. doi:10.1016/j.biocon.2008.04.024

    Google Scholar 

  • Cai ZQ, Schnitzer SA, Bongers F (2009) Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia 161(1):25–33. doi:10.1007/s00442-009-1355-4

    PubMed Central  PubMed  Google Scholar 

  • Chittibabu CV, Parthasarathy N (2001) Liana diversity and host relationships in a tropical evergreen forest in the Indian Eastern Ghats. Ecol Res 16(3):519–529

    Google Scholar 

  • Cochrane MA, Laurance WF (2002) Fire as a large-scale edge effect in Amazonian forests. J Trop Ecol 18(3):311–325

    Google Scholar 

  • Cochrane MA, Laurance WF (2008) Synergisms among fire, land use, and climate change in the Amazon. Ambio 37(7/8):522–527

    PubMed  Google Scholar 

  • Cochrane MA, Alencar A, Schulze MD, Souza CM, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284(5421):1832–1835. doi:10.1126/science.284.5421.1832

    CAS  PubMed  Google Scholar 

  • Condon MA, Sasek TW, Strain BR (1992) Allocation patterns in 2 tropical vines in response to increased atmospheric CO2. Funct Ecol 6(6):680–685

    Google Scholar 

  • Corlett RT (2007) The impact of hunting on the Mammalian Fauna of tropical Asian forests. Biotropica 39(3):292–303. doi:10.1111/j.1744-7429.2007.00271.x

    Google Scholar 

  • Dalling JW, Schnitzer SA, Baldeck C, Harms KE, John R, Mangan SA, Lobo E, Yavitt JB, Hubbell SP (2012) Resource-based habitat associations in a neotropical liana community. J Ecol 100(5):1174–1182. doi:10.1111/j.1365-2745.2012.01989.x

    Google Scholar 

  • DeWalt SJ, Schnitzer S, Denslow JS (2000) Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. J Trop Ecol 16(1):1–19

    Google Scholar 

  • DeWalt SJ, Schnitzer SA, Chave J, Bongers F, Burnham RJ, Cai ZQ, Chuyong G, Clark DB, Ewango CEN, Gerwing JJ, Gortaire E, Hart T, Ibarra-Manriquez G, Ickes K, Kenfack D, Macia MJ, Makana JR, Martinez-Ramos M, Mascaro J, Moses S, Muller-Landau HC, Parren MPE, Parthasarathy N, Perez-Salicrup DR, Putz FE, Romero-Saltos H, Thomas D (2010) Annual rainfall and seasonality predict pan-tropical patterns of liana density and basal area. Biotropica 42(3):309–317. doi:10.1111/j.1744-7429.2009.00589.x

    Google Scholar 

  • Ding Y, Zang R (2009) Effects of logging on the diversity of lianas in a lowland tropical rain forest in Hainan Island, South China. Biotropica 41(5):618–624. doi:10.1111/j.1744-7429.2009.00515.x

    Google Scholar 

  • Dirzo R, Raven P (2003) Global state of biodiversity and loss. Ann Rev Environ Resour 28:137–167

    Google Scholar 

  • Durigon J, Durán SM, Gianoli E (2013) Global distribution of root climbers is positively associated with precipitation and negatively associated with seasonality. J Trop Ecol 29(4):357–360. doi:10.1017/S0266467413000308

    Google Scholar 

  • Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical cyclones. Nature 455(7209):92–95. doi:http://www.nature.com/nature/journal/v455/n7209/suppinfo/nature07234_S1.html

  • Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436(7051):686–688. doi:http://www.nature.com/nature/journal/v436/n7051/suppinfo/nature03906_S1.html

  • Fox JED (1968) Logging damage and the influence of climber cutting prior to logging in the lowland Dipterocarp forest of Sabah. Malays For 31:326–347

    Google Scholar 

  • Fu R, Yin L, Li W, Arias PA, Dickinson RE, Huang L, Chakraborty S, Fernandes K, Liebmann B, Fisher R, Myneni RB (2013) Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc Natl Acad Sci 110(45):18110–18115. doi:10.1073/pnas.1302584110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gentry AH (1991) The distribution and evolution of climbing plants. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge

    Google Scholar 

  • Gerland P, Raftery AE, Ševčíková H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick BK, Chunn J, Lalic N, Bay G, Buettner T, Heilig GK, Wilmoth J (2014) World population stabilization unlikely this century. Science. doi:10.1126/science.1257469

    PubMed Central  PubMed  Google Scholar 

  • Gerwing JJ (2001) Testing liana cutting and controlled burning as silvicultural treatments for a logged forest in the eastern Amazon. J Appl Ecol 38(6):1264–1276

    Google Scholar 

  • Gerwing JJ (2006) The influence of reproductive traits on liana abundance 10 years after conventional and reduced-impacts logging in the eastern Brazilian Amazon. For Ecol Manage 221(1–3):83–90. doi:10.1016/j.foreco.2005.09.008

    Google Scholar 

  • Gerwing JJ, Uhl C (2002) Pre-logging liana cutting reduces liana regeneration in logging gaps in the eastern Brazilian Amazon. Ecol Appl 12(6):1642–1651

    Google Scholar 

  • Gerwing JJ, Vidal E (2002) Changes in liana abundance and species diversity eight years after liana cutting and logging in an eastern Amazonian forest. Conserv Biol 16(2):544–548

    Google Scholar 

  • Gianoli E (2004) Evolution of a climbing habit promotes diversification in flowering plants. Proc R Soc B Biol Sci 271(1552):2011–2015. doi:10.1098/rspb.2004.2827

    Google Scholar 

  • Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJA, Laurance WF, Lovejoy TE, Sodhi NS (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478(7369):378–381. doi:http://www.nature.com/nature/journal/v478/n7369/abs/nature10425.html#supplementary-information

  • Granados J, Korner C (2002) In deep shade, elevated CO2 increases the vigor of tropical climbing plants. Glob Chang Biol 8(11):1109–1117

    Google Scholar 

  • Hansen MC, Stehman SV, Potapov PV, Loveland TR, Townshend JRG, DeFries RS, Pittman KW, Arunawati B, Stolle F, Steininger MK, Carroll M, DiMiceli C (2008) Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. Proc Natl Acad Sci U S A 105(27):9439–9444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853. doi:10.1126/science.1244693

    CAS  PubMed  Google Scholar 

  • Hegarty EE, Clifford HT (1991) Climbing angiosperms in the Australian Flora. In: Werren G, Kershaw P (eds) The rainforest legacy; Australian national rainforests study, vol 2, Flora and fauna of the rainforests. Australian Government Publishing Services, Canberra

    Google Scholar 

  • Hernandez-Stefanoni JL (2005) Relationships between landscape patterns and species richness of trees, shrubs and vines in a tropical forest. Plant Ecol 179(1):53–65. doi:10.1007/s11258-004-5776-1

    Google Scholar 

  • Ingwell LL, Wright SJ, Becklund KK, Hubbell SP, Schnitzer SA (2010) The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. J Ecol 98(4):879–887. doi:10.1111/j.1365-2745.2010.01676.x

    Google Scholar 

  • Kapos V (1989) Effects of isolation on the water status of forest patches in the Brazilian Amazon. J Trop Ecol 5(02):173–185. doi:10.1017/S0266467400003448

    Google Scholar 

  • Korner C (2004) Through enhanced tree dynamics carbon dioxide enrichment may cause tropical forests to lose carbon. Philos Trans R Soc Lond Ser B Biol Sci 359(1443):493–498. doi:10.1098/rstb.2003.1429

    Google Scholar 

  • Körner C (2009) Responses of humid tropical trees to rising CO2. Ann Rev Ecol Evol Syst 40(1):61–79. doi:10.1146/annurev.ecolsys.110308.120217

    Google Scholar 

  • Laporte NT, Stabach JA, Grosch R, Lin TS, Goetz SJ (2007) Expansion of industrial logging in Central Africa. Science 316(5830):1451. doi:10.1126/science.1141057

    CAS  PubMed  Google Scholar 

  • Laurance WF (2008) Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141(7):1731–1744. doi:10.1016/j.biocon.2008.05.011

    Google Scholar 

  • Laurance WF, Bierregaard RO Jr (eds) (1997) Tropical forest remnants: ecology, management, and conservation of fragmented communities. The University of Chicago Press, Chicago

    Google Scholar 

  • Laurance WF, Curran TJ (2008) Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral Ecol 33(4):399–408. doi:10.1111/j.1442-9993.2008.01895.x

    Google Scholar 

  • Laurance WF, Yensen E (1991) Predicting the impacts of edge effects in fragmented habitats. Biol Conserv 55(1):77–92. doi:10.1016/0006-3207(91)90006-u

    Google Scholar 

  • Laurance WF, Laurance SG, Ferreira LV, Rankin-de Merona JM, Gascon C, Lovejoy TE (1997) Biomass collapse in Amazonian forest fragments. Science 278(5340):1117–1118. doi:10.1126/science.278.5340.1117

    CAS  Google Scholar 

  • Laurance WF, Ferreira LV, Rankin-de Merona JM, Laurance SG (1998) Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology 79(6):2032–2040

    Google Scholar 

  • Laurance WF, Gascon C, Rankin-de Merona JM (1999) Predicting effects of habitat destruction on plant communities: a test of a model using. Amazon Trees Ecol Appl 9(2):548–554. doi:10.1890/1051-0761(1999)009[0548:peohdo]2.0.co;2

    Google Scholar 

  • Laurance WF, Delamonica P, Laurance SG, Vasconcelos HL, Lovejoy TE (2000) Conservation: rainforest fragmentation kills big trees. Nature 404(6780):836

    CAS  PubMed  Google Scholar 

  • Laurance WF, Perez-Salicrup D, Delamonica P, Fearnside PM, D’Angelo S, Jerozolinski A, Pohl L, Lovejoy TE (2001a) Rain forest fragmentation and the structure of Amazonian liana communities. Ecology 82(1):105–116

    Google Scholar 

  • Laurance WF, Williamson GB, Delamonica P, Oliveira A, Lovejoy TE, Gascon C, Pohl L (2001b) Effects of a strong drought on Amazonian forest fragments and edges. J Trop Ecol 17(6):771–785. doi:10.1017/S0266467401001596

    Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ribeiro JELS, Giraldo JP, Lovejoy TE, Condit R, Chave J, Harms KE, D’Angelo S (2006) Rapid decay of tree-community composition in Amazonian forest fragments. Proc Natl Acad Sci U S A 103(50):19010–19014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laurance WF, Goosem M, Laurance SGW (2009) Impacts of roads and linear clearings on tropical forests. Trends Ecol Evol 24(12):659–669. doi:http://dx.doi.org/10.1016/j.tree.2009.06.009

  • Laurance WF, Camargo JLC, Luizão RCC, Laurance SG, Pimm SL, Bruna EM, Stouffer PC, Bruce Williamson G, Benítez-Malvido J, Vasconcelos HL, Van Houtan KS, Zartman CE, Boyle SA, Didham RK, Andrade A, Lovejoy TE (2011) The fate of Amazonian forest fragments: a 32-year investigation. Biol Conserv 144(1):56–67. doi:10.1016/j.biocon.2010.09.021

    Google Scholar 

  • Laurance WF, Andrade AS, Magrach A, Camargo J, Campbell M, Fearnside PM, Edwards W, Valsko JJ, Lovejoy TE, Laurance SG (2014) Apparent environmental synergism drives the dynamics of Amazonian forest fragments. Ecology 95(11):3018–3026. doi:10.1890/14-0330.1

  • Laurance WF, Andrade AS, Magrach A, Camargo JLC, Valsko JJ, Campbell M, Fearnside PM, Edwards W, Lovejoy TE, Laurance SG (2014a) Long-term changes in liana abundance and forest dynamics in undisturbed Amazonian forests. Ecology 95(6):1604–1611. doi:10.1890/13-1571.1

    PubMed  Google Scholar 

  • Laurance WF, Clements GR, Sloan S, O’Connell CS, Mueller ND, Goosem M, Venter O, Edwards DP, Phalan B, Balmford A, Van Der Ree R, Arrea IB (2014b) A global strategy for road building. Nature 513(7517):229–232. doi:10.1038/nature13717, http://www.nature.com/nature/journal/v513/n7517/abs/nature13717.html#supplementary-information

    CAS  PubMed  Google Scholar 

  • Ledo A, Schnitzer SA (2014) Disturbance and clonal reproduction determine liana distribution and maintain liana diversity in a tropical forest. Ecology 95(8):2169–2178. doi:10.1890/13-1775.1

    PubMed  Google Scholar 

  • Letcher SG, Chazdon RL (2009) Lianas and self-supporting plants during tropical forest succession. For Ecol Manage 257(10):2150–2156. doi:10.1016/j.foreco.2009.02.028

    Google Scholar 

  • Lienert J (2004) Habitat fragmentation effects on fitness of plant populations – a review. J Nature Conserv 12(1):53–72. doi:http://dx.doi.org/10.1016/j.jnc.2003.07.002

  • Londre RA, Schnitzer SA (2006) The distribution of lianas and their change in abundance in temperate forests over the past 45 years. Ecology 87(12):2973–2978. doi:10.1890/0012-9658(2006)87[2973:tdolat]2.0.co;2

    PubMed  Google Scholar 

  • Malhi Y, Wright J (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos Trans R Soc B Biol Sci 359(1443):311–329

    Google Scholar 

  • Malizia A, Grau HR (2008) Landscape context and microenvironment influences on liana communities within treefall gaps. J Veg Sci 19(5):597–604. doi:10.3170/2008-8-18413

    Google Scholar 

  • Mendelsohn R, Emanuel K, Chonabayashi S, Bakkensen L (2012) The impact of climate change on global tropical cyclone damage. Nat Clim Change 2(3):205–209. doi:http://www.nature.com/nclimate/journal/v2/n3/abs/nclimate1357.html#supplementary-information

  • Mohandass D, Hughes AC, Campbell M, Davidar P (2014) Effects of patch size on liana diversity and distributions in the tropical montane evergreen forests of the Nilgiri mountains, southern India. J Trop Ecol 30:579–590

    Google Scholar 

  • Muller-Landau HC (2007) Predicting the long-term effects of hunting on plant species composition and diversity in tropical forests. Biotropica 39(3):372–384. doi:10.1111/j.1744-7429.2007.00290.x

    Google Scholar 

  • Muthuramkumar S, Parthasarathy N (2000) Alpha diversity of lianas in a tropical evergreen forest in the Anamalais, Western Ghats, India. Divers Distrib 6(1):1–14. doi:10.2307/2673371

    Google Scholar 

  • Muthuramkumar S, Ayyappan N, Parthasarathy N, Mudappa D, Raman TRS, Selwyn MA, Pragasan LA (2006) Plant community structure in tropical rain forest fragments of the Western Ghats, India. Biotropica 38(2):143–160. doi:10.1111/j.1744-7429.2006.00118.x

    Google Scholar 

  • Nabe-Nielsen J, Kollmann J, Pena-Claros M (2009) Effects of liana load, tree diameter and distances between conspecifics on seed production in tropical timber trees. For Ecol Manage 257(3):987– 993. doi:10.1016/j.foreco.2008.10.033

    Google Scholar 

  • Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88(9):2259–2269

    PubMed  Google Scholar 

  • Oliveira AT, deMello JM, Scolforo JRS (1997) Effects of past disturbance and edges on tree community structure and dynamics within a fragment of tropical semideciduous forest in south-eastern Brazil over a five-year period (1987–1992). Plant Ecol 131(1):45–66

    Google Scholar 

  • Parren MPE, Doumbia F (2005) Logging and lianas in West Africa. CABI Publishing, Wallingford, pp 183–201

    Google Scholar 

  • Parthasarathy N, Muthuranikumar S, Reddy MS (2004) Patterns of liana diversity in tropical evergreen forests of peninsular India. For Ecol Manage 190(1):15–31. doi:10.1016/j.foreco.2003.10.003

    Google Scholar 

  • Penalosa J (1984) Basal branching and vegetative spread in two tropical rain forest lianas. Biotropica 16(1):1–9. doi:10.2307/2387886

    Google Scholar 

  • Peres CA, Palacios E (2007) Basin-wide effects of game harvest on vertebrate population densities in Amazonian forests: implications for animal-mediated seed dispersal. Biotropica 39(3):304–315. doi:10.1111/j.1744-7429.2007.00272.x

    Google Scholar 

  • Perez-Salicrup DR, Claros A, Guzman R, Licona JC, Ledezma F, Pinard MA, Putz FE (2001) Cost and efficiency of cutting lianas in a lowland liana forest of Bolivia. Biotropica 33(2):324–329

    Google Scholar 

  • Phillips OL, Martinez RV, Arroyo L, Baker TR, Killeen T, Lewis SL, Malhi Y, Mendoza AM, Neill D, Vargas PN, Alexiades M, Ceron C, Di Fiore A, Erwin T, Jardim A, Palacios W, Saldias M, Vinceti B (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418(6899):770–774. doi:10.1038/nature00926

    CAS  PubMed  Google Scholar 

  • Power S, Delage F, Chung C, Kociuba G, Keay K (2013) Robust twenty-first-century projections of El[thinsp]Nino and related precipitation variability. Nature 502(7472):541–545. doi:10.1038/nature12580

    CAS  PubMed  Google Scholar 

  • Putz FE (1984) The natural history of lianas on Barro-Colorado island, Panama. Ecology 65(6):1713–1724

    Google Scholar 

  • Putz FE, Mooney HA (1991) The biology of vines. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Santos KD, Kinoshita LS, Rezende AA (2009) Species composition of climbers in seasonal semideciduous forest fragments of Southeastern Brazil. Biota Neotropica 9(4):175–188

    Google Scholar 

  • Schnitzer SA (2005) A mechanistic explanation for global patterns of liana abundance and distribution. Am Nat 166(2):262–276

    PubMed  Google Scholar 

  • Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17(5):223–230. doi:http://dx.doi.org/10.1016/S0169-5347(02)02491-6

  • Schnitzer SA, Bongers F (2005) Lianas and gap-phase regeneration: implications for forest dynamics and species diversity. CABI Publishing, Wallingford, pp 59–72

    Google Scholar 

  • Schnitzer SA, Bongers F (2011) Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecol Lett 14(4):397–406. doi:10.1111/j.1461-0248.2011.01590.x

    PubMed  Google Scholar 

  • Schnitzer SA, Carson WP (2001) Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82(4):913–919

    Google Scholar 

  • Schnitzer SA, Carson WP (2010) Lianas suppress tree regeneration and diversity in treefall gaps. Ecol Lett 13(7):849–857. doi:10.1111/j.1461-0248.2010.01480.x

    PubMed  Google Scholar 

  • Schnitzer SA, Dalling JW, Carson WP (2000) The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. J Ecol 88(4):655–666

    Google Scholar 

  • Schnitzer SA, Parren MPE, Bongers F (2004) Recruitment of lianas into logging gaps and the effects of pre-harvest climber cutting in a lowland forest in Cameroon. For Ecol Manage 190(1):87–98. doi:10.1016/j.foreco.2003.10.008

  • Schnitzer SA, Kuzee ME, Bongers F (2005) Disentangling above- and below-ground competition between lianas and trees in a tropical forest. J Ecol 93(6):1115–1125. doi:10.1111/j.1365-2745.2005.01056.x

    Google Scholar 

  • Schnitzer S, Bongers F, Wright SJ (2011) Community and ecosystem ramifications of increasing lianas in neotropical forests. Plant Signal Behav 6(4):598–600

    PubMed Central  PubMed  Google Scholar 

  • Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci 109(40):16083–16088. doi:10.1073/pnas.1211658109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thorpe SKS, Holder R, Crompton RH (2009) Orangutans employ unique strategies to control branch flexibility. Proc Natl Acad Sci 106(31):12646–12651. doi:10.1073/pnas.0811537106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tobin MF, Wright AJ, Mangan SA, Schnitzer SA (2012) Lianas have a greater competitive effect than trees of similar biomass on tropical canopy trees. Biological Science Faculty Publications (Ecosphere) 3(2):Publication 2. doi:10.1890/ES11-00322.1

  • Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chappell J, Ellam RM, Lea DW, Lough JM, Shimmield GB (2001) Variability in the El Niño-southern oscillation through a glacial-interglacial cycle. Science 291(5508):1511–1517. doi:10.1126/science.1057969

    CAS  PubMed  Google Scholar 

  • Turton SM, Siegenthaler DT (2004) Immediate impacts of a severe tropical cyclone on the microclimate of a rain forest canopy in north-east Australia. J Trop Ecol 20(5):583–586

    Google Scholar 

  • van der Heijden GMF, Phillips OL (2008) What controls liana success in Neotropical forests? Glob Ecol Biogeogr 17(3):372–383. doi:10.1111/j.1466-8238.2007.00376.x

    Google Scholar 

  • van der Sande M, Poorter L, Schnitzer S, Markesteijn L (2013) Are lianas more drought-tolerant than trees? A test for the role of hydraulic architecture and other stem and leaf traits. Oecologia 172(4):961–972. doi:10.1007/s00442-012-2563-x

    PubMed  Google Scholar 

  • Webb LJ (1958) Cyclones as an ecological factor in tropical lowland rainforest, North Queensland. Aust J Bot 6(3):220–230

    Google Scholar 

  • Whigham DF, Olmsted I, Cano EC, Harmon ME (1991) The impact of Hurricane Gilbert on trees, litterfall, and woody debris in a dry tropical forest in the Northeastern Yucatan Peninsula. Biotropica 23(4):434–441. doi:10.2307/2388263

    Google Scholar 

  • Wilcove DS, McLellan CH, Dobson AP (1986) Habitat fragmentation in the temperate zone. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, pp 237–256

    Google Scholar 

  • Williams-Linera G (1990) Vegetation structure and environmental conditions of forest edges in Panama. J Ecol 78(2):356–373

    Google Scholar 

  • Wright SJ (2005) Tropical forests in a changing environment. Trends Ecol Evol 20(10):553–560. doi:10.1016/j.tree.2005.07.009

    PubMed  Google Scholar 

  • Wright SJ, Calderon O, Hernandez A, Paton S (2004) Are lianas increasing in importance in tropical forests? A 17-year record from Panama. Ecology 85(2):484–489

    Google Scholar 

  • Wright SJ, Jaramillo MA, Pavon J, Condit R, Hubbell SP, Foster RB (2005) Reproductive size thresholds in tropical trees: variation among individuals, species and forests. J Trop Ecol 21(3):307–315. doi:10.2307/4092035

    Google Scholar 

  • Wright SJ, Hernandez A, Condit R (2007) The bushmeat harvest alters seedling banks by favoring lianas, large seeds, and seeds dispersed by bats, birds, and wind. Biotropica 39(3):363–371. doi:10.1111/j.1744-7429.2007.00289.x

    Google Scholar 

  • Yanoviak SP, Schnitzer S (2013) Functional roles of lianas for forest canopy animals. In: Lowman M, Devy S, Ganesh T (eds) Tree tops at risk. Springer, New York

    Google Scholar 

  • Yorke SR, Schnitzer SA, Mascaro J, Letcher SG, Carson WP (2013) Increasing liana abundance and basal area in a tropical forest: the contribution of long-distance clonal colonization. Biotropica 45(3):317–324. doi:10.1111/btp.12015

    Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11(10):413–418. doi:10.1016/0169-5347(96)10045-8

    CAS  PubMed  Google Scholar 

  • Zhu H, Xu ZF, Wang H, Li BG (2004) Tropical rain forest fragmentation and its ecological and species diversity changes in southern Yunnan. Biodivers Conserv 13(7):1355–1372. doi:10.1023/B:BIOC.0000019397.98407.c3

    Google Scholar 

Download references

Acknowledgements

This research was supported by an ARC Discovery Grant awarded to WL. AM was funded by an ETH fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mason Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Campbell, M., Magrach, A., Laurance, W.F. (2015). Liana Diversity and the Future of Tropical Forests. In: Parthasarathy, N. (eds) Biodiversity of Lianas. Sustainable Development and Biodiversity, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-14592-1_13

Download citation

Publish with us

Policies and ethics