Skip to main content

Sponges as Proxies for Past Climate Change Events

  • Chapter
  • First Online:
Climate Change, Ocean Acidification and Sponges

Abstract

An understanding of past environmental conditions and the processes that govern change is essential in order to predict future climate changes. Historical environmental conditions can be reconstructed based on the composition of mineral skeletons of marine organisms. Some marine sponges, such as the hypercalcified (‘sclerosponge’) sponges, the desma-bearing (‘lithistid’) sponges and hexactinellid (glass) sponges, are estimated to live for hundreds to thousands of years. These sponges accrete elements in isotopic equilibrium with seawater, making them good potential Paleoclimate indicators. We review the literature on the use of sponges as proxies for climate change. The accuracy of sponge proxy data is highly dependent on the accuracy of dating methods, and multiple samples per specimen are recommended to confirm the reproducibility of results. δ13Carbon values in shallow-water hypercalcified sponges appear to be a good proxy for atmospheric carbon dioxide concentrations, with good correlations between δ13carbon measurements from sponge skeletons and atmospheric carbon dioxide concentrations. Results using δ18oxygen values and strontium/calcium ratios as proxies for temperature are mixed, and results appear to be influenced by sponge species and region. δ30Silicon values in siliceous sponge spicules from dated sediment cores appear to be a good proxy for long-term changes in ocean silicon concentrations. Quantification of zinc/silicon and germanium/silicon ratios in sponges also show potential as proxies for ocean silicon concentrations, but more research is needed in this area. In summary, research on a number of sponge proxies has shown promising results for use as Paleoclimate indicators. Application of these proxies generally produces climatic reconstructions that are in agreement with published results from other proxies. However, much more research is needed to further develop sponge proxies and to gain a better understanding of the processes that control both the incorporation of the proxy within the sponge and its concentration in the surrounding water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A correlation between δ13C and δ18O is an indication that these isotopes are not accreted in isotopic equilibrium (Swart 1983).

  2. 2.

    A form of calcium carbonate found in marine organisms such as molluscs, corals and sponges.

  3. 3.

    A chemical, physical or biological change to sediment.

  4. 4.

    The outermost layer of cells in a sponge.

  5. 5.

    Measurement of the number of light and dark density bands (137–144 pairs ±~10%) corresponds well to the estimated age of the sponge (135–160 years) by 32Si dating.

References

  • Allison N, Tudhope AW, EIMF (2012) The skeletal geochemistry of the sclerosponge Astrosclera willeyana: implications for biomineralisation processes and palaeoenvironmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 313–314:70–77. doi:10.1016/j.palaeo.2011.10.009

    Article  Google Scholar 

  • Andersen KK, Azuma N, Barnola JM, Bigler M, Biscaye P, Caillon N, Chappellaz J, Clausen HB, Dahl-Jensen D, Fischer H, Flückiger J, Fritzsche D, Fujii Y, Goto-Azuma K, Grønvold K, Gundestrup NS, Hansson M, Huber C, Hvidberg CS, Johnsen SJ, Jonsell U, Jouzel J, Kipfstuhl S, Landais A, Leuenberger M, Lorrain R, Masson-Delmotte V, Miller H, Motoyama H, Narita H, Popp T, Rasmussen SO, Raynaud D, Rothlisberger R, Ruth U, Samyn D, Schwander J, Shoji H, Siggard-Andersen ML, Steffensen JP, Stocker T, Sveinbjörnsdóttir AE, Svensson A, Takata M, Tison JL, Thorsteinsson T, Watanabe O, Wilhelms F, White JWC (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431(7005):147–151. doi:10.1038/nature02805

    Article  CAS  PubMed  Google Scholar 

  • Audi G, Bersillon O, Blachot J, Wapstra AH (2003) The Nubase evaluation of nuclear and decay properties. Nucl Phys A 729(1):3–128. doi:10.1016/j.nuclphysa.2003.11.001

    Article  CAS  Google Scholar 

  • Beck JW, Edwards RL, Ito E, Taylor FW, Recy J, Rougerie F, Joannot P, Henin C (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257:644–647

    Article  CAS  PubMed  Google Scholar 

  • Benavides LM, Druffel ERM (1986) Sclerosponge growth rate as determined by 210Pb and Δ 14C chronologies. Coral Reefs 4(4):221–224

    Article  Google Scholar 

  • Böhm F, Joachimski MM, Lehnert H, Morgenroth G, Kretschmer W, Vacelet J, Dullo WC (1996) Carbon isotope records from extant Caribbean and South Pacific sponges: evolution of δ13C in surface water DIC. Earth Planet Sci Lett 139(1–2):291–303. doi:10.1016/0012-821X(96)00006-4

    Article  Google Scholar 

  • Böhm F, Joachimski MM, Dullo W-C, Eisenhauer A, Lehnert H, Reitner J, Wörheide G (2000) Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochim Cosmochim Acta 64(10):1695–1703. doi:10.1016/S0016-7037(99)00408-1

    Article  Google Scholar 

  • Böhm F, Haase-Schramm A, Eisenhauer A, Dullo W-C, Joachimski MM, Lehnert H, Reitner J (2002) Evidence for preindustrial variations in the marine surface water carbonate system from coralline sponges. Geochem Geophys Geosyst 3(3):1–13

    Article  Google Scholar 

  • Cardinal D, Hamelin B, Bard E, Pätzold J (2001) Sr/Ca, U/Ca ad δ18O records in recent massive corals from Bermuda: relationships with sea surface temperature. Chem Geol 176(1–4):213–233. doi:10.1016/S0009-2541(00)00396-X

    Article  CAS  Google Scholar 

  • Chombard C, Boury-Esnault N, Tillier A, Vacelet J (1997) Polyphyly of ‘Sclerosponges’ (Porifera, Demospongiae) supported by 28S ribosomal sequences. Biol Bull 193(3):359–367

    Article  CAS  PubMed  Google Scholar 

  • Cohen AL, Owens KE, Layne GD, Shimizu N (2002) The effect of algal symbionts on the accuracy of Sr/Ca paleotemperatures from coral. Science 296(5566):331–333. doi:10.1126/science.1069330

    Article  CAS  PubMed  Google Scholar 

  • de la Rocha CL, Brzezinski MA, DeNiro MJ (1997) Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochim Cosmochim Acta 61(23):5051–5056. doi:10.1016/S0016-7037(97)00300-1

    Article  Google Scholar 

  • de Villiers S, Nelson BK, Chivas AR (1995) Biological controls on coral Sr/Ca and δ18O reconstructions of sea surface temperatures. Science 269(5228):1247–1249

    Article  PubMed  Google Scholar 

  • Druffel ERM, Benavides LM (1986) Input of excess CO2 to the surface ocean based on 13C/12C ratios in a Jamaican sclerosponge. Nature 321(6023):58–61

    Article  CAS  Google Scholar 

  • Dunstan P, Sacco WK (1982) The sclerosponges of Chalet Caribe Reef. Discovery 16:13–17

    Google Scholar 

  • Edwards RL, Chen JH, Wasserburg GJ (1987) 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet Sci Lett 81(2–3):175–192. doi:10.1016/0012-821X(87)90154-3

    Article  CAS  Google Scholar 

  • Ellwood MJ, Kelly M (2003) Sponge “tree rings”: new indicators of ocean variability? Water Atmos 11(2):25–27

    Google Scholar 

  • Ellwood MJ, Kelly M, Nodder SD, Carter L (2004) Zinc/silicon ratios of sponges: a proxy for carbon export to the sea floor. Geophys Res Lett 31:L12308

    Article  CAS  Google Scholar 

  • Ellwood MJ, Kelly M, Neil H, Nodder SD (2005) Reconstruction of paleo–particulate organic carbon fluxes for the Campbell Plateau region of southern New Zealand using the zinc content of sponge spicules. Paleoceanography 20:PA3010. doi:10.1029/2004PA001095

    Article  Google Scholar 

  • Ellwood MJ, Kelly M, Maher WA, de Deckker P (2006) Germanium incorporation into sponge spicules: development of a proxy for reconstructing inorganic germanium and silicon concentrations in seawater. Earth Planet Sci Lett 243:749–759

    Article  CAS  Google Scholar 

  • Ellwood MJ, Kelly M, de Forges BR (2007) Silica banding in the deep-sea lithistid sponge Corallistes undulatus: investigating the potential influence of diet and environment on growth. Limnol Oceanogr 52(5):1865–1873

    Article  CAS  Google Scholar 

  • Ellwood MJ, Wille M, Maher WA (2010) Glacial silicic acid concentrations in the Southern Ocean. Science 330(6007):1088–1091

    Article  CAS  PubMed  Google Scholar 

  • Emerson S, Hedges JI (1988) Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3(5):621–634. doi:10.1029/PA003i005p00621

    Article  Google Scholar 

  • Fallon SJ, Guilderson TP (2005) Extracting growth rates from the nonlaminated coralline sponge Astrosclera willeyana using bomb radiocarbon. Limnol Oceanogr Methods 3:455–461

    Article  CAS  Google Scholar 

  • Fallon SJ, Guilderson TP, Caldeira K (2003a) Carbon isotope constraints on vertical mixing and air-sea CO2 exchange. Geophys Res Lett 30(24):2289. doi:10.1029/2003GL018049

    Article  CAS  Google Scholar 

  • Fallon SJ, Mcculloch MT, Alibert C (2003b) Examining water temperature proxies in porites corals from the Great Barrier Reef: a cross-shelf comparison. Coral Reefs 22(4):389–404

    Article  Google Scholar 

  • Fallon SJ, McCulloch MT, Guilderson TP (2005) Interpreting environmental signals from the coralline sponge Astrosclera willeyana. Palaeogeogr Palaeoclimatol Palaeoecol 228(1–2):58–69. doi:10.1016/j.palaeo.2005.03.053

    Article  Google Scholar 

  • Fallon SJ, James K, Norman R, Kelly M, Ellwood MJ (2010) A simple radiocarbon dating method for determining the age and growth rate of deep-sea sponges. Nucl Instrum Methods Phys Res, Sect B 268(7–8):1241–1243. doi:10.1016/j.nimb.2009.10.143

    Article  CAS  Google Scholar 

  • Fifield LK, Morgenstern U (2009) Silicon-32 as a tool for dating the recent past. Quat Geochronol 4(5):400–405. doi:10.1016/j.quageo.2008.12.006

    Article  Google Scholar 

  • Froelich PN, Andreae MO (1981) The marine geochemistry of germanium: ekasilicon. Science 213(4504):205–207

    Article  CAS  PubMed  Google Scholar 

  • Froelich PN, Mortlock RA, Shemesh A (1989) Inorganic germanium and silica in the Indian Ocean: biological fractionation during (Ge/Si) OPAL formation. Global Biogeochem Cycles 3(1):79–88. doi:10.1029/GB003i001p00079

    Article  CAS  Google Scholar 

  • Gilis M, Grauby O, Willenz P, Dubois P, Heresanu V, Baronnet A (2013) Biomineralization in living hypercalcified demosponges: toward a shared mechanism? J Struct Biol 183(3):441–454. doi:10.1016/j.jsb.2013.05.018

    Article  CAS  PubMed  Google Scholar 

  • Grossman EL (1987) Stable isotopes in modern benthic foraminifera: a study of vital effect. J Foraminifer Res 17(1):48–61

    Article  Google Scholar 

  • Grottoli AG (2006) Monthly resolved stable oxygen isotope record in a Palauan sclerosponge Acanthocheatetes wellsi for the period of 1977–2001. In: Suzuki Y, Nakamori T, Hidaka M et al (eds) Proceedings of the 10th international coral reef symposium, Okinawa, Japan, 28 June–2 July, 2004. Japanese Coral Reef Society, Tokyo, pp 572–579

    Google Scholar 

  • Grottoli AG, Adkins JF, Panero WR, Reaman DM, Moots K (2010) Growth rates, stable oxygen isotopes (δ18O), and strontium (Sr/Ca) composition in two species of Pacific sclerosponges (Acanthocheatetes wellsi and Astrosclera willeyana) with δ18O calibration and application to paleoceanography. J Geophys Res Oceans 115(6):C06008. doi:10.1029/2009JC005586

    Google Scholar 

  • Haase-Schramm A, Böhm F, Eisenhauer A, Dullo W-C, Joachimski MM, Hansen B, Reitner J (2003) Sr/Ca ratios and oxygen isotopes from sclerosponges: temperature history of the Caribbean mixed layer and thermocline during the Little Ice Age. Paleoceanography 18(3):18.11–18.15. doi:10.1029/2002PA000830

    Article  Google Scholar 

  • Hammond DE, McManus J, Berelson WM, Meredith C, Klinkhammer GP, Coale KH (2000) Diagenetic fractionation of Ge and Si in reducing sediments: the missing Ge sink and a possible mechanism to cause glacial/interglacial variations in oceanic Ge/Si. Geochim Cosmochim Acta 64(14):2453–2465. doi:10.1016/S0016-7037(00)00362-8

    Article  CAS  Google Scholar 

  • Hammond DE, McManus J, Berelson WM (2004) Oceanic germanium/silicon ratios: evaluation of the potential overprint of temperature on weathering signals. Paleoceanography 19(2). doi:10.1029/2003PA000940

  • Hartman WD, Goreau TF (1970) Jamaican coralline sponges: their morphology, ecology and fossil relatives. Symp Zool Soc Lond 25:205–243

    Google Scholar 

  • Hartman WD, Goreau TF (1972) Ceratoporella (Porifera: Sclerospongiae) and the chaetetid “corals”. Trans Connecticut Acad Arts Sci 44:133–148

    Google Scholar 

  • Hartman WD, Goreau TF (1975) A Pacific tabulate sponge, living representative of a new order of sclerosponges. Postilla 167:1–21

    Article  Google Scholar 

  • Hendry KR, Andersen MB (2013) The zinc isotopic composition of siliceous marine sponges: investigating nature’s sediment traps. Chem Geol 354:33–41. doi:10.1016/j.chemgeo.2013.06.025

    Article  CAS  Google Scholar 

  • Hendry KR, George RB, Rickaby REM, Robinson LF, Halliday AN (2010) Deep ocean nutrients during the Last Glacial Maximum deduced from sponge silicon isotopic compositions. Earth Planet Sci Lett 292:290–300

    Article  CAS  Google Scholar 

  • Hendry KR, Leng MJ, Robinson LF, Sloane HJ, Blusztjan J, Rickaby REM, Georg RB, Halliday AN (2011) Silicon isotopes in Antarctic sponges: an interlaboratory comparison. Antarct Sci 23(1):34–42

    Article  Google Scholar 

  • Hughes GB, Thayer CW (2001) Sclerosponges: potential high-resolution recorders of marine paleotemperatures. In: Gerhard LC, Harrison WE, Hanson BM (eds) Geological perspectives of global climate change. American Association of Petroleum Geologists, Tulsa, pp 137–151

    Google Scholar 

  • Jochum KP, Wang X, Vennemann TW, Sinha B, Müller WEG (2012) Siliceous deep-sea sponge Monorhaphis chuni: a potential paleoclimate archive in ancient animals. Chem Geol 300–301:143–151. doi:10.1016/j.chemgeo.2012.01.009

    Article  CAS  Google Scholar 

  • Johnsen SJ, Dahl-Jensen D, Gundestrup N, Steffensen JP, Clausen HB, Miller H, Masson-Delmotte V, Sveinbjörnsdottir AE, White J (2001) Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J Quat Sci 16(4):299–307. doi:10.1002/jqs.622

    Article  Google Scholar 

  • Keeling CD (1979) The Suess effect: 13Carbon–14Carbon interrelations. Environ Int 2(4):229–300. doi:10.1016/0160-4120(79)90005-9

    Article  CAS  Google Scholar 

  • Kelly M (2007) The marine fauna of New Zealand: Porifera: lithistid demospongiae (rock sponges). National Institute of Water and Atmospheric Research, Wellington. NIWA Biodiversity Memoir no. 121

    Google Scholar 

  • King SL, Froelich PN, Jahnke RA (2000) Early diagenesis of germanium in sediments of the Antarctic South Atlantic: in search of the missing Ge sink. Geochim Cosmochim Acta 64(8):1375–1390. doi:10.1016/S0016-7037(99)00406-8

    Article  CAS  Google Scholar 

  • Kisakürek B, Eisenhauer A, Böhm F, Garbe-Schönberg D, Erez J (2008) Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white). Earth Planet Sci Lett 273(3–4):260–269. doi:10.1016/j.epsl.2008.06.026

    Article  CAS  Google Scholar 

  • Klein RT, Lohmann KC, Thayer CW (1996) Bivalve skeletons record sea-surface temperature and δ18O via Mg/Ca and 18O/16O ratios. Geology 24(5):415–418

    Article  CAS  Google Scholar 

  • Lal D, Nijampurkar VN, Somayajulu BLK (1970) Concentration of cosmogenic 32Si in deep Pacific and Indian waters based on study of Galathea deep-sea siliceous sponges. Galathea Rep 11:247–256

    Google Scholar 

  • Lazareth CE, Willenz P, Navez J, Keppens E, Deharis F, Andre L (2000) Sclerosponges as a new potential recorder of environmental changes: lead in Ceratoporella nicholsoni. Geology 28:515–518

    Article  CAS  Google Scholar 

  • Leng MJ, Swann GEA, Hodson MJ, Tyler JJ, Patwardhan SV, Sloane HJ (2009) The potential use of silicon isotope composition of biogenic silica as a proxy for environmental change. Silicon 1(2):65–77. doi:10.1007/s12633-009-9014-2

    Article  CAS  Google Scholar 

  • Mann DG (1999) The species concept in diatoms. Phycologia 38:437–495

    Article  Google Scholar 

  • McConnaughey T (1989) 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim Cosmochim Acta 53(1):151–162. doi:10.1016/0016-7037(89)90282-2

    Article  CAS  Google Scholar 

  • McCulloch MT, Gagan MK, Mortimer GE, Chivas AR, Isdale PJ (1994) A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia, and the 1982–1983 El Niño. Geochim Cosmochim Acta 58(12):2747–2754. doi:10.1016/0016-7037(94)90142-2

    Article  CAS  Google Scholar 

  • McCulloch MT, Tudhope AW, Esat TM, Mortimer GE, Chappell J, Pillans B, Chivas AR, Omura A (1999) Coral record of equatorial sea-surface temperatures during the penultimate deglaciation at Huon Peninsula. Science 283(5399):202–204. doi:10.1126/science.283.5399.202

    Article  CAS  PubMed  Google Scholar 

  • McManus J, Hammond DE, Cummins K, Klinkhammer GP, Berelson WM (2003) Diagenetic Ge-Si fractionation in continental margin environments: further evidence for a nonopal Ge sink. Geochim Cosmochim Acta 67(23):4545–4557. doi:10.1016/S0016-7037(03)00385-5

    Article  CAS  Google Scholar 

  • Mitsuguchi T, Matsumoto E, Abe O, Uchida T, Isdale PJ (1996) Mg/Ca thermometry in coral skeletons. Science 274(5289):961–963

    Article  CAS  PubMed  Google Scholar 

  • Moore MD, Charles CD, Rubenstone JL, Fairbanks RG (2000) U/Th-dated sclerosponges from the Indonesian Seaway record subsurface adjustments to west Pacific winds. Paleoceanography 15(4):404–416. doi:10.1029/1999PA000396

    Article  Google Scholar 

  • Müller WEG, Jochum KP, Stoll B, Wang X (2008) Formation of giant spicule from quartz glass by the deep sea sponge Monorhaphis. Chem Mater 20(14):4703–4711. doi:10.1021/cm800734q

    Article  CAS  Google Scholar 

  • Murozumi M, Chow TJ, Patterson C (1969) Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochim Cosmochim Acta 33:1247–1294

    Article  CAS  Google Scholar 

  • Neftel A, Moor E, Oeschger H, Stauffer B (1985) Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315(6014):45–47

    Article  CAS  Google Scholar 

  • Pisera A (2003) Some aspects of silica deposition in lithistid demosponge desmas. Microsc Res Tech 62(4):312–326. doi:10.1002/jemt.10398

    Article  CAS  PubMed  Google Scholar 

  • Pisera A, Lévi C (2002) ‘Lithistid’ demospongiae. In: Hooper JNA, van Soest RWM (eds) Systema Porifera. A guide to the classification of sponges, vol 1. Kluwer Academic/Plenum, New York, pp 299–301

    Google Scholar 

  • Putten EV, Dehairs F, Keppens E, Baeyens W (2000) High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: environmental and biological controls. Geochim Cosmochim Acta 64(6):997–1011. doi:10.1016/S0016-7037(99)00380-4

    Article  CAS  Google Scholar 

  • Ragueneau O, Tréguer P, Leynaert A, Anderson RF, Brzezinski MA, DeMaster DJ, Dugdale RC, Dymond J, Fischer G, François R, Heinze C, Maier-Reimer E, Martin-Jézéquel V, Nelson DM, Quéguiner B (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planet Change 26(4):317–365. doi:10.1016/S0921-8181(00)00052-7

    Article  Google Scholar 

  • Ravelo AC, Hillaire-Marcel C (2007) The use of oxygen and carbon isotopes of foraminifera in palaeoceanography. In: Hillaire-Marcel C, de Vernal A (eds) Developments in marine geology, Proxies in late Cenozoic paleoceanography, vol 1. Elsevier, Amsterdam, pp 735–763

    Google Scholar 

  • Reitner J, Gautret P (1996) Skeletal formation in the modern but ultraconservative chaetetid sponge Spirastrella (Acanthochaetetes) wellsi (Demospongiae, Porifera). Facies 34(1):193–207. doi:10.1007/bf02546164

    Article  Google Scholar 

  • Reynaud S, Ferrier-Pagès C, Meibom A, Mostefaoui S, Mortlock R, Fairbanks R, Allemand D (2007) Light and temperature effects on Sr/Ca and Mg/Ca ratios in the scleractinian coral Acropora sp. Geochim Cosmochim Acta 71(2):354–362. doi:10.1016/j.gca.2006.09.009

    Article  CAS  Google Scholar 

  • Reynolds BC, Frank M, Halliday AN (2006) Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth Planet Sci Lett 244(1–2):431–443. doi:10.1016/j.epsl.2006.02.002

    Article  CAS  Google Scholar 

  • Riebeek H (2005) Paleoclimatology: the oxygen balance. http://earthobservatory.nasa.gov/Features/Paleoclimatology_OxygenBalance/. Accessed June 2016

  • Rosenheim B, Swart PK, Thorrold S, Willenz P, Berry L, Latkoczy C (2004) High-resolution Sr/Ca records in sclerosponges calibrated to temperature in situ. Geology 32(2):145–148

    Article  CAS  Google Scholar 

  • Rosenheim BE, Swart PK, Thorrold SR (2005a) Minor and trace elements in sclerosponge Ceratoporella nicholsoni: biogenic aragonite near the inorganic endmember? Palaeogeogr Palaeoclimatol Palaeoecol 228(1–2):109–129. doi:10.1016/j.palaeo.2005.03.055

    Article  Google Scholar 

  • Rosenheim BE, Swart PK, Thorrold SR, Eisenhauer A, Willenz P (2005b) Salinity change in the subtropical Atlantic: secular increase and teleconnections to the North Atlantic Oscillation. Geophys Res Lett 32(2):L02603. doi:10.1029/2004GL021499

    Article  Google Scholar 

  • Rosenheim BE, Swart PK, Eisenhauer A (2007) Constraining initial 230Th activity in incrementally deposited, biogenic aragonite from the Bahamas. Geochim Cosmochim Acta 71(16):4025–4035. doi:10.1016/j.gca.2007.05.025

    Article  CAS  Google Scholar 

  • Rosenheim BE, Swart PK, Willenz P (2009) Calibration of sclerosponge oxygen isotope records to temperature using high-resolution δ18O data. Geochim Cosmochim Acta 73(18):5308–5319. doi:10.1016/j.gca.2009.05.047

    Article  CAS  Google Scholar 

  • Rosenthal Y, Boyle EA, Slowey N (1997) Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: prospects for thermocline paleoceanography. Geochim Cosmochim Acta 61(17):3633–3643

    Article  CAS  Google Scholar 

  • Rousseau J, Ellwood MJ, Bostock H, Neil H (2016) Estimates of late quaternary mode and intermediate water silicic acid concentration in the Pacific Southern Ocean. Earth Planet Sci Lett 439:101–108. doi:10.1016/j.epsl.2016.01.023

    Article  CAS  Google Scholar 

  • Saenger C, Cohen AL, Oppo DW, Hubbard D (2008) Interpreting sea surface temperature from strontium/calcium ratios in Montastrea corals: link with growth rate and implications for proxy reconstructions. Paleoceanography 23(3). doi:10.1029/2007PA001572

  • Schrag DP (1999) Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates. Paleoceanography 14(2):97–102. doi:10.1029/1998PA900025

    Article  Google Scholar 

  • Shen GT, Boyle EA (1987) Lead in corals: reconstruction of historical industrial fluxes to the surface oceans. Earth Planet Sci Lett 82(3–4):289–304

    Article  CAS  Google Scholar 

  • Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365(6442):119–125

    Article  CAS  Google Scholar 

  • Sinclair DJ, Kinsley LPJ, McCulloch MT (1998) High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta 62(11):1889–1901. doi:10.1016/S0016-7037(98)00112-4

    Article  CAS  Google Scholar 

  • Somayajulu BLK, Lal D, Craig H (1973) Silicon-32 profiles in the South Pacific. Earth Planet Sci Lett 18:181–188

    Article  CAS  Google Scholar 

  • Sutton JN, Varela DE, Brzezinski MA, Beucher CP (2013) Species-dependent silicon isotope fractionation by marine diatoms. Geochim Cosmochim Acta 104:300–309. doi:10.1016/j.gca.2012.10.057

    Article  CAS  Google Scholar 

  • Swart PK (1983) Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth Sci Rev 19(1):51–80. doi:10.1016/0012-8252(83)90076-4

    Article  CAS  Google Scholar 

  • Swart PK, Moore M, Charles C, Böhm F (1998a) Sclerosponges may hold new keys to marine paleoclimate. Eos 79(52):633–640

    Article  Google Scholar 

  • Swart PK, Rubenstone JL, Charles C, Reitner J (1998b) Sclerosponges: a new proxy indicator of climate. National Oceanic and Atmospheric Administration

    Google Scholar 

  • Swart PK, Thorrold S, Rosenheim B, Eisenhauer A, Harrison CGA, Grammer M, Latkoczy C (2002) Intra-annual variation in the stable oxygen and carbon and trace element composition of sclerosponges. Paleoceanography 17(3):1045. doi:10.1029/2000PA000622

    Article  Google Scholar 

  • Uriz M-J (2006) Mineral skeletogenesis in sponges. Can J Zool 84(2):322–356. doi:10.1139/z06-032

    Article  CAS  Google Scholar 

  • Vacelet J (1985) Coralline sponges and the evolution of Porifera. In: Morris SC, George JD, Gibson R, Platt HM (eds) The origins and relationship of lower invertebrates, vol 28. Clarendon Press, Oxford, pp 1–13

    Google Scholar 

  • Volk T, Hoffert MI (2013) Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: The carbon cycle and atmospheric CO2: natural variations Archean to present. American Geophysical Union, Washington, pp 99–110. doi:10.1029/GM032p0099

    Chapter  Google Scholar 

  • Watanabe T, Winter A, Oba T (2001) Seasonal changes in sea surface temperature and salinity during the Little Ice Age in the Caribbean Sea deduced from Mg/Ca and 18O/16O ratios in corals. Mar Geol 173(1–4):21–35. doi:10.1016/S0025-3227(00)00166-3

    Article  CAS  Google Scholar 

  • Weber JN, Woodhead PMJ (1972) Temperature dependence of oxygen-18 concentration in reef coral carbonates. J Geophys Res 77(3):463–473

    Article  CAS  Google Scholar 

  • Wille M, Sutton J, Ellwood MJ, Sambridge M, Maher W, Eggins S, Kelly M (2010) Silicon isotopic fractionation in marine sponges: a new model for understanding silicon isotopic variations in sponges. Earth Planet Sci Lett 292(3–4):281–289. doi:10.1016/j.epsl.2010.01.036

    Article  CAS  Google Scholar 

  • Willenz P, Hartman WD (1985) Calcification rate of Ceratoporella nicholsoni (Porifera: Sclerospongiae): an in situ study with calcein. In: Delesalle B (ed) Proceedings of the fifth international coral reef congress, Moorea, French Polynesia, Tahiti, 27 May–1 June 1985. Antenne Museum-Ecole Pratique des Hautes Etudes, Moorea, pp 113–118

    Google Scholar 

  • Willenz P, Hartman WD (1989) Micromorphology and ultrastructure of Caribbean sclerosponges. I. Ceratoporella nicholsoni and Stromatospongia norae (Ceratoporellidae: Porifera). Mar Biol 103:387–401

    Article  Google Scholar 

  • Willenz P, Hartman WD (1999) Growth and regeneration rates of the calcareous skeleton of the Caribbean coralline sponge Ceratoporella nicholsoni: a long term survey. Mem Qld Mus 44(1–2):675–685

    Google Scholar 

  • Wood R (1990a) Non-spicular biomineralization in calcified demosponges. In: Reitner J, Keupp H (eds) Fossil and recent sponges. Springer-Verlag, Berlin Heidelberg, pp 322–340

    Google Scholar 

  • Wood R (1990b) Reef-building sponges. Am Sci 78(3):224–235

    Google Scholar 

  • Wörheide G (1998) The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana Lister 1900 from the Indo-Pacific. Facies 38(1):1–88. doi:10.1007/BF02537358

    Article  Google Scholar 

  • Yool A, Tyrrell T (2003) Role of diatoms in regulating the ocean’s silicon cycle. Global Biogeochem Cycles 17(4):1–21. doi:10.1029/2002GB002018

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carina Sim-Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sim-Smith, C., Ellwood, M., Kelly, M. (2017). Sponges as Proxies for Past Climate Change Events. In: Carballo, J., Bell, J. (eds) Climate Change, Ocean Acidification and Sponges. Springer, Cham. https://doi.org/10.1007/978-3-319-59008-0_3

Download citation

Publish with us

Policies and ethics