Skip to main content

Porous Nature of the Absorptive Mechanism

  • Conference paper
Intracranial Pressure II

Abstract

The physiologist’s approach to the estimation of the porosity of the drainage channels for cerebrospinal fluid (CSF) consists essentially in introducing a variety of substances into the ventricular or subarachnoid space and estimating the rate of loss. This latter may be determined by examining the change in concentration of the CSF after a known time or by measuring the change in concentration in the blood; the blood sampled may be that from, say, the femoral artery or, when practicable, from the torcular; in the former case the picture is complicated by renal excretion etc. whilst a less equivocal picture is undoubtedly obtained by examination of torcular blood since the drainage of CSF occurs primarily if not exclusively into the superior sagittal sinus. Examination of the CSF poses problems as to the site of withdrawal in a large animal, since there is little doubt that, as drainage proceeds, inhomogeneties in concentration will develop, so that if the material is introduced into a ventricle, the concentration in this will tend to fall whilst that in the subarachnoid spaces will rise as the flow proceeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DAVSON, H.: The rates of disappearance of substances injected into the subarachnoid space of rabbits. J. Physiol. 128, 52–53 (1955 a).

    PubMed  CAS  Google Scholar 

  2. DAVSON, H.: A comparative study of the aqueous humour and cerebrospinal fluid in the rabbit. J. Physiol. 129, 111–133 (1955 b).

    PubMed  CAS  Google Scholar 

  3. BRODIE, B.B., KURZ, H., SCHANKER, L.S.: The importance of dissociation constant and lipid-solubility in influencing the passage of drugs into the cerebrospinal fluid. J. Pharmacol. 130, 20–25 (1960).

    CAS  Google Scholar 

  4. BRIGHTMAN, M.W.: The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I. J. Cell Biol. 26, 99–123 (1965).

    Article  PubMed  CAS  Google Scholar 

  5. MAYER, S., MAICKEL, R.P., BRODIE, B.B.: Kinetics of penetration of drugs and other foreign compounds into cerebrospinal fluid and brain. J. Pharmacol. 127, 205–211 (1959).

    CAS  Google Scholar 

  6. PAPPENHEIMER, J.R., HEISEY, S.R., JORDAN, E.F.: Active transport of Diodrast and phenolsulfonphtalein from cerebrospinal fluid to blood. Amer. J. Physiol. 200, 1–10 (1961).

    PubMed  CAS  Google Scholar 

  7. POLLAY, M., DAVSON, H.: The passage of certain substances out of the cerebrospinal fluid. Brain 86, 137–150 (1963).

    Article  PubMed  CAS  Google Scholar 

  8. BECKER, B.: Cerebrospinal fluid iodide. Amer. J. Physiol. 201, 1149–1151 (1961).

    PubMed  CAS  Google Scholar 

  9. WELCH, K.: Concentration of thiocyanate by the choroid plexus of the rabbit in vitro. Proc. Soc. exp. Biol. N.Y. 109, 953–954 (1962).

    CAS  Google Scholar 

  10. BITO, L.Z., BRADBURY, M.W.B., DAVSON, H.: Factors affecting the distribution of iodide and bromide in the central nervous system. J. Physiol. 185, 323–354 (1966).

    PubMed  CAS  Google Scholar 

  11. COBEN, L.A., SMITH, K.R.: Iodide transfer at four cerebrospinal fluid sites in the dog; evidence for spinal iodide carrier transport. Expl. Neurol. 23, 76–90 (1969).

    Article  CAS  Google Scholar 

  12. AHMED, N., VAN HARREVELD, A.: The iodide space in rabbit brain. J. Physiol. 204, 31–50 (1969).

    PubMed  CAS  Google Scholar 

  13. DAVSON, H., HOLLINGSWORTH, J.R.: Active transport of 131I across the blood-brain barrier. J. Physiol. 233, 327–347 (1973).

    PubMed  CAS  Google Scholar 

  14. BRADBURY, M.W.B., DAVSON, H.: The transport of urea, creatinine and certain monosaccharides between blood and fluid perfusing the cerebral ventricular system of rabbits. J. Physiol. 170, 195–211 (1964).

    PubMed  CAS  Google Scholar 

  15. DAVSON, H., SEGAL, M.B.: The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. J. Physiol. 209, 131–153 (1970).

    PubMed  CAS  Google Scholar 

  16. PROCKOP, L.D., LEWIS, S., SCHANKER, L.S., BRODIE, B.B.: Passage of lipidinsoluble substances from cerebrospinal fluid to blood. J. Pharmacol. 135, 266–270 (1962).

    CAS  Google Scholar 

  17. DAVSON, H.: Physiology of the Ocular and Cerebrospinal Fluids. J. & A. Churchill Ltd., London (1956).

    Google Scholar 

  18. WELCH, K., FRIEDMAN, V.: The cerebrospinal fluid valves. Brain 83, 454–469 (1960).

    Article  PubMed  CAS  Google Scholar 

  19. SHABO, A.L., MAXWELL, D.S.: The subarachnoid space following the introduction of a foreign protein; an electron microscopic study with peroxidase. J. Neuropath, expl. Neurol. 30. 506–524 (1971).

    Article  CAS  Google Scholar 

  20. ALKSNE, J.F., LOVINGS, E.R.: The role of the arachnoid villus in the removal of red blood cells from the subarachnoid space. J. Neurosurg. 36, 192–200 (1972).

    Article  PubMed  CAS  Google Scholar 

  21. DAVSON, H., HOLLINGSWORTH, J.R., SEGAL, M.B.: The mechanism of drainage of the cerebrospinal fluid. Brain 93, 665–678 (1970).

    Article  PubMed  CAS  Google Scholar 

  22. DAVSON, H., DOMER, F.R., HOLLINGSWORTH, J.R.: The mechanism of drainage of the cerebrospinal fluid. Brain 96, 329–336 (1973).

    Article  PubMed  CAS  Google Scholar 

  23. TRIPATHI, R.C.: Mechanism of the aqueous outflow across the trabecular wall of Schlemm’s canal. Expl. Eye Res. 11, 116–121 (1971).

    Article  CAS  Google Scholar 

  24. TRIPATHI, R.C.: Ultrastructure of the arachnoid mater in re- lation to outflow of cerebrospinal fluid. A new concept. Lancet ii, 8–11 (1973).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Davson, H. (1975). Porous Nature of the Absorptive Mechanism. In: Lundberg, N., Pontén, U., Brock, M. (eds) Intracranial Pressure II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66086-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66086-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66088-7

  • Online ISBN: 978-3-642-66086-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics