Skip to main content

New Approaches to Evaluating the Pulmonary Effects of Controlled Inhalation Exposures in Human Volunteers

  • Conference paper
Advances in Controlled Clinical Inhalation Studies

Part of the book series: ILSI Monographs ((ILSI MONOGRAPHS))

  • 57 Accesses

Abstract

The respiratory tract serves as a passive portal of entry for various inhaled gases (e.g., CO) and vapors (e.g., benzene, toluene, methanol) as well as a target organ for the toxicologic effects of certain reactive gases (e.g., O3) and inhaled particulate matter. I will limit my remarks to the latter class of air pollutants and discuss only effects on the respiratory system. Nevertheless, we should bear in mind the possibility that systemic as well as localized respiratory tract effects may be attributable to inhaled toxicants. My remarks will deal with some issues in experimental protocol development, with newer experimental techniques suitable for use in human subjects, and with the promise and pitfalls of in vitro toxicologic study of human cells. Most of my illustrations will come from ozone toxicology with which I have the greatest familiarity, but which I hope will be generalizable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avol EL, Linn WS, Shamoo DA, Valencia LM, Anzar UT, Hackney JD (1985) Respiratory effects of photochemical oxidant air pollution in exercising adolescents. Am Rev Respir Dis 132:619–622

    PubMed  CAS  Google Scholar 

  • Avol EL, Linn WS, Shamoo DA, Valencia LM, Venet TG, Trim SC, Hackney JD (1987) Short-term respiratory effects of photochemical oxidant exposure in exercising children. J Air Pollut Control Assoc 37:158–162

    CAS  Google Scholar 

  • Bartels M (1972) Collateral Ventilation beim Menschen. Thesis, Tübingen University

    Google Scholar 

  • Bascom R, Naclerio RM, Fitzgerald TK, Kagey-Sobotka A, Proud D (1990) Effect of ozone inhalation on the response to nasal challenge with antigen of allergic subjects. Am Rev Respir Dis 142:594–601

    Article  PubMed  CAS  Google Scholar 

  • Becker S, Soukup J, Yankaskas JR (1991a) Respiratory syncytial virus infection of human primary nasal and bronchial epithelial cell cultures and bronchoalveolar macrophages. Am J Respir Cell Mol Biol (in press)

    Google Scholar 

  • Becker S, Madden M, Newman SL, Devlin RB, Koren HS (1991b) Modulation of human alveolar macrophage properties by ozone exposure in vitro. Toxicol Appl Pharmacol (in press)

    Google Scholar 

  • Ben-Jebria A, Ultman JS (1989) Fast-responding chemiluminescent ozone analyzer for respiratory applications. Rev Sci Instrum 60:3004–3011

    Article  CAS  Google Scholar 

  • Ben-Jebria A, Hu S-C, Ultman JS (1990) Improvements in a chemiluminescent analyzer for respiratory applications. Rev Sci Instrum 61:3435–3439

    Article  CAS  Google Scholar 

  • Bromberg PA, Ranga V, Stutts MJ (1991) Effects of ozone on airways epithelial permeability and ion transport. Research report 48, Health Effects Institute, Cambridge, MA, pp 1–21

    Google Scholar 

  • DeFries JC, Fulker DW (1985) Multiple regression analysis of twin data. Behav Genet 15:467–473

    Article  PubMed  CAS  Google Scholar 

  • Devlin RB, Koren HS (1990) The use of two-dimensional gel electrophoresis to analyze changes in alveolar macrophage proteins in humans exposed to ozone. Am J Respir Cell Mol Biol 2:281–288

    PubMed  CAS  Google Scholar 

  • Devlin RB, McDonnell WF, Mann R, Becker S, House DE, Schreinemachers D, Koren HS (1991a) Exposure of humans to ambient levels of ozone for 6.6 hours causes cellular and biochemical changes in the lung. Am J Respir Cell Mol Biol 4:72–81

    PubMed  CAS  Google Scholar 

  • Devlin, RB, Noah T, McKinnon KP, Koren HS (1991b) The use of a cell line as a model system to study the interaction of environmental toxicants with human airway epithelial cells. Toxicologist 11:851

    Google Scholar 

  • Drechsler-Parks DM, Bedi JF, Horvath SM (1987) Pulmonary function response of older men and women to ozone exposure. Exp Gerontol 22:91–101

    Article  PubMed  CAS  Google Scholar 

  • Gerrity TR, Weaver RA, Berntsen J, House DE, O’Neil JJ (1988) Extrathoracic and intrathoracic removal of ozone in tidal-breathing humans. J Appl Physiol 65:393–400

    PubMed  CAS  Google Scholar 

  • Gerrity TR, Bennett WD, Keefe M, DeWitt P, Chapman W (1991) The response of tracheobronchial clearance of inhaled particles to acute ozone exposure in healthy humans. Am Rev Respir Dis 143:A91

    Google Scholar 

  • Gliner JA, Horvath SM, Folinsbee LJ (1983) Pre-exposure to low ozone concentrations does not diminish the pulmonary function response on exposure to higher ozone concentration. Am Rev Respir Dis 127:51–55

    PubMed  CAS  Google Scholar 

  • Hazucha MJ, Bates DV, Bromberg PA (1989) Mechanism of action of ozone on the human lung. J Appl Physiol 67:1535–1541

    PubMed  CAS  Google Scholar 

  • Hazucha MJ, Pape G, Madden M, Koren H, Kehrl H, Bromberg P (1991) Effects of cyclooxygenase inhibition on ozone-induced respiratory inflammation and lung function changes. Am Rev Respir Dis 143:A701

    Google Scholar 

  • Heyder J, Blanchard JD, Feldman HA, Brain JD (1988) Convective mixing in human respiratory tract: estimates with aerosol boli. J Appl Physiol 64:1273–1278

    Google Scholar 

  • Higgins ITT, D’Arcy JB, Gibbons DI, Avol EL, Gross KB (1990) Effect of exposures to ambient ozone on ventilatory lung function in children. Am Rev Respir Dis 141:1136–1146

    PubMed  CAS  Google Scholar 

  • Horstman D, Roger LJ, Kehrl H, Hazucha MJ (1986) Airway sensitivity of asthmatics to sulfur dioxide. Toxicol Ind Health 2:289–298

    PubMed  CAS  Google Scholar 

  • Horstman DH, Folinsbee LJ, Ives PJ, Abdul-Salaam S, McDonnell WF (1990) Ozone concentration and pulmonary response relationships for 6.6-hour exposures with five hours of moderate exercise. Am Rev Respir Dis 142:1158–1163

    PubMed  CAS  Google Scholar 

  • Hu S-C, Ben-Jebria A, Ultman JS (1992) Longitudinal distribution of ozone absorption in the lung: quiet respiration in healthy subjects. J Appl Physiol 73:1655–1661

    PubMed  CAS  Google Scholar 

  • Ke Y, Reddel RR, Gerwin BI, Miyashita M, McMenamin M, Lechner JF, Harris CC (1988) Human bronchial epithelial cells with integrated SV40 virus T antigen genes retain the ability to undergo squamous differentiation. Differentiation 38:60–66

    Article  PubMed  CAS  Google Scholar 

  • Keefe MJ, Bennett WD, DeWitt P, Seal E, Strong AA, Gerrity TR (1991) The effect of ozone exposure on the dispersion of inhaled aerosol boluses in healthy human subjeçts. Am Rev Respir Dis 144:23–30

    Article  PubMed  CAS  Google Scholar 

  • Kehrl HR, Hazucha MJ, Solic JJ, Bromberg PA (1985) Responses of subjects with chronic obstructive pulmonary disease after exposure to 0.3 ppm ozone. Am Rev Respir Dis 131:719–724

    PubMed  CAS  Google Scholar 

  • Kehrl HR, Vincent LM, Kowalsky RJ, Horstman DH, O’Neil JJ, McCartney WH, Bromberg PA (1987) Ozone exposure increases respiratory epithelial permeability in man. Am Rev Respir Dis 135:1124–1128

    PubMed  CAS  Google Scholar 

  • Koenig JQ, Covert DS, Smith MS, Van Belle G, Pierson WE (1988) The pulmonary effects of 03 and NO2 alone and combined in healthy and asthmatic adolescent subjects. Toxicol Ind Health 4:521–532

    PubMed  CAS  Google Scholar 

  • Koren HS, Devlin RB, Graham DE, Mann R, McGee MP, Horstman DH, Kozumbo WJ, Becker S, House DE, McDonnell WF, Bromberg PA (1989) Ozone-induced inflammation in the lower airways of human subjects. Am Rev Respir Dis 139:407–415

    Article  PubMed  CAS  Google Scholar 

  • Koren HS, Devlin RB, Becker S, Perez R, McDonnell WF (1991) Time-dependent changes of markers associated with inflammation in the lungs of humans exposed to ozone. Toxicol Pathol 19:406–411

    PubMed  CAS  Google Scholar 

  • McCawley M, Lippmann M (1988) Development of an aerosol dispersion test to detect early changes in lung function. Am Ind Hyg Assoc J 49:357–366

    Article  PubMed  CAS  Google Scholar 

  • McDonnell WF, Horstman DH, Hazucha MJ, Seal E Jr, Haak ED, Salaam SA, House DE (1983) Pulmonary effects of ozone exposure during exercise: dose- response characteristics. J Appl Physiol 54:1345–1352

    PubMed  CAS  Google Scholar 

  • McDonnell WF, Horstman DH, Salaam SA, House DE (1985a) Reproducibility of individual responses to ozone exposure. Am Rev Respir Dis 131:36–40

    PubMed  CAS  Google Scholar 

  • McDonnell WF, Chapman RS, Leigh MW, Strope GL, Collier AM (1985b) Respiratory response of vigorously exercising children to 0.12 ppm ozone exposure. Am Rev Respir Dis 132:875–879

    PubMed  Google Scholar 

  • McDonnell WF, Kehrl HR, Abdul-Salaam S, Ives PJ, Folinsbee LJ, Devlin RB, O’Neil JJ, Horstman DH (1991) Respiratory responses of humans exposed to low levels of ozone for 6.6 hours. Arch Environ Health 46:145–150

    Article  PubMed  CAS  Google Scholar 

  • McDonnell WF, Muller KE, Bromberg PA, Shy CM (1993) Predictors of individual differences in acute response to ozone exposure. Am Rev Respir Dis 147: xxx-xxx (in press)

    Google Scholar 

  • Menkes HA, Traystman RJ (1977) Collateral ventilation. Am Rev Respir Dis 116:287–309

    PubMed  CAS  Google Scholar 

  • Molfino NA, Wright SC, Katz I, Tarlo S, Silverman F, McClean PA, Szalai JP, Raizenne M, Slutsky AS, Zamel N (1991) Effect of low concentrations of ozone on inhaled allergen responses in asthmatic subjects. Lancet 338:199–203

    Article  PubMed  CAS  Google Scholar 

  • Pryor WA, Das B, Church DF (1991) The ozonation of unsaturated fatty acids: aldehydes and hydrogen peroxide as products and possible mediators of ozone toxicity. Chem Res Toxicol 4:341–348

    Article  PubMed  CAS  Google Scholar 

  • Reddel RR, Ke Y, Gerwin BI, McMenamin MG, Lechner JF, Su RT, Brash DE, Park J-B, Rhim JS, Harris CC (1988) Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes. Cancer Res 48:1904–1909

    PubMed  CAS  Google Scholar 

  • Rennard SI, Basset G, Lecossier D, O’Donnell K, Martin P, Crystal RG (1986) Estimation of volume of epithelial lining fluid recovered by lavage using urea as a marker of dilution. J Appl Physiol 60:532–538

    PubMed  CAS  Google Scholar 

  • Rennard SI, Ghafouri M, Thompson AB, Linder J, Vaughan W, Jones K, Ertl RF, Christensen K, Prince A, Stahl MG, Robbins RA (1990) Fractional processing of sequential bronchoalveolar lavage to separate bronchial and alveolar samples. Am Rev Respir Dis 141:208–217

    PubMed  CAS  Google Scholar 

  • Rombout P, Lioy PJ, Goldstein BD (1986) Rationale for an eight-hour ozone standard. J Air Pollut Control Assoc 36:913–917

    CAS  Google Scholar 

  • Samet JM, Noah T, McKinnon K, Devlin RB, Friedman M (1991) Effect of ozone on platelet activating factor (PAF) synthesis in human bronchial epithelial cells. FASEB J 5:A484

    Google Scholar 

  • Schelegle ES, Adams WC, Siefkin AD (1987) Indomethacin pretreatment reduces ozone-induced pulmonary function decrements in human subjects. Am Rev Respir Dis 136:1350–1354

    Article  PubMed  CAS  Google Scholar 

  • Schelegle ES, Siefkin AD, McDonald RJ (1991) Time course of ozone-induced neutrophilia in normal humans. Am Rev Respir Dis 143:1353–1358

    PubMed  CAS  Google Scholar 

  • Seltzer J, Bigby BG, Stulbarg M, Holtzman MJ, Nadel JA, Ueki IF, Leikauf GD, Goetzl EJ, Boushey HA (1986) Ozone-induced change in bronchial reactivity to methacholine and airway inflammation in humans. J Appl Physiol 60:1321–1326

    PubMed  CAS  Google Scholar 

  • Spektor DM, Lippmann M, Lioy PJ, Thurston GD, Citak K, James DJ, Bock N, Speizer FE, Hayes C (1988) Effects of ambient ozone on respiratory function in active, normal children. Am Rev Respir Dis 137:313–320

    PubMed  CAS  Google Scholar 

  • Webster PM, Lorimer EG, Paul SF, Woolf CR, Zamel N (1979) Pulmonary function in identical twins: comparison of non-smokers and smokers. Am Rev Respir Dis 119:223–228

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bromberg, P.A. (1993). New Approaches to Evaluating the Pulmonary Effects of Controlled Inhalation Exposures in Human Volunteers. In: Mohr, U., Bates, D.V., Fabel, H., Utell, M.J. (eds) Advances in Controlled Clinical Inhalation Studies. ILSI Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77176-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77176-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77178-1

  • Online ISBN: 978-3-642-77176-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics