Skip to main content

Convulsants Acting at the Inhibitory Glycine Receptor

  • Chapter
Selective Neurotoxicity

Part of the book series: Springer Study Edition ((SSE,volume 102))

Abstract

Inhibitory neurotransmission in the CNS is predominantly mediated by γ-aminobutyric acid (GABA) and glycine. Whereas GABAergic synapses are abundant in the cortex and cerebellum, glycine predominates in the spinal cord and brain stem (reviewed by Betz and Becker 1988; Langosch et al. 1990a,b). Glycine-mediated synaptic inhibition was first demonstrated in the spinal cord where, at the segmental level, neuronal pathways regulate the tonus of skeletal muscle (reviewed by Krnjevic 1981; Aprison 1990). Glycinergic synapses prevail in the spinal sensory, auditory, and visual system and in other parts of the CNS.

This work was supported by Deutsche Forschungsgemeinschaft (SFB 317 and Heisenberg-Programm).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akagi H, Miledi R (1988a) Expression of glycine and other amino acid receptors by rat spinal cord mRNA in Xenopus oocytes. Neurosci Lett 95:262–268

    PubMed  CAS  Google Scholar 

  • Akagi H, Miledi R (1988b) Heterogeneity of glycine receptors and their messenger RNAs in rat brain and spinal cord. Science 242:270–273

    PubMed  CAS  Google Scholar 

  • Akagi H, Patton DE, Miledi R (1989) Discrimination of heterogenous mRNAs encoding strychnine-sensitive glycine receptors in Xenopus oocytes by antisense oligonucleotides. Proc Natl Acad Sci USA 86:8103–8107

    PubMed  CAS  Google Scholar 

  • Akagi H, Hirai K, Hishinuma F (1991) Cloning of a glycine receptor subtype expressed in rat brain and spinal cord during a specific period of neuronal development. FEBS Lett 281:160–166

    PubMed  CAS  Google Scholar 

  • Akaike N, Kaneda M (1989) Glycine-gated chloride current in acutely isolated rat hypothalamic neurons. J Neurophysiol 62:1400–1409

    PubMed  CAS  Google Scholar 

  • Altschuler RA, Betz H, Parakkal MH, Reeks KA, Wenthold RJ (1986) Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor. Brain Res 369:316–320

    PubMed  CAS  Google Scholar 

  • Al Zamil Z, Bagust J, Kerkut G A (1990) Tubocurarine and strychnine block Renshaw cell inhibition in the isolated mammalian spinal cord. Gen Pharmacol 21:499–509

    PubMed  CAS  Google Scholar 

  • Aprison MH (1990) The discovery of the neurotransmitter role of glycine. In: Ottersen O, Storm-Mathisen V (eds) Glycine neurotransmission. Wiley, Chichester, pp 1–23

    Google Scholar 

  • Aprison MH, Lipkowitz KB, Simon JR (1987) Identification of a glycine-like fragment on the strychnine molecule. J Neurosci Res 17:209–213

    PubMed  CAS  Google Scholar 

  • Araki T, Yamano M, Murakami T, Wanaka A, Betz H, Tohyama M (1988) Localization of glycine receptors in the rat central nervous system: an immunocytochemical analysis using monoclonal antibody. Neuroscience 25:613–624

    PubMed  CAS  Google Scholar 

  • Asanuma A, Horikoshi T, Yanagisawa K, Anzai K, Goto S (1987) The distribution of GABA and glycine response in the mouse brain using Xenopus oocytes. Neurosci Lett 76:87–90

    PubMed  CAS  Google Scholar 

  • Ascher P, Gachelin G (1967) Rôle du colliculus supérieur dans l’élaboration de réponse motrices à des stimulations visuelles. Brain Res 3:327–342

    PubMed  CAS  Google Scholar 

  • Barker JL, McBurney RN, Mathers DA (1983) Convulsant-induced depression of amino acid responses in cultured mouse spinal neurones studied under voltage clamp. Br J Pharmacol 80:619–629

    PubMed  CAS  Google Scholar 

  • Barron SE, Guth PS (1987) Use and limitations of strychnine as a probe in neurotransmission. Trends Pharmacol Sci 8:204–206

    CAS  Google Scholar 

  • Basbaum AI (1988) Distribution of glycine receptor immunoreactivity in the spinal cord of the rat: cytochemical evidence for a differential glycinergic control of lamina I and V nociceptive neurons. J Comp Neurol 278:330–336

    PubMed  CAS  Google Scholar 

  • Becker C-M (1990) Disorders of the inhibitory glycine receptor: the spastic mouse. FASEB J 4:2767–2774

    PubMed  CAS  Google Scholar 

  • Becker C-M, Betz H (1987) Strychnine: useful probe or not? Trends Pharmacol Sci 8:379–380

    CAS  Google Scholar 

  • Becker C-M, Hermans-Borgmeyer I, Schmitt B, Betz H (1986) The glycine receptor deficiency of the mutant mouse spastic: evidence for normal glycine receptor structure and localization. J Neurosci 6:1358–1364

    PubMed  CAS  Google Scholar 

  • Becker C-M, Hoch W, Betz H (1988) Glycine receptor heterogeneity in rat spinal cord during postnatal development. EMBO J 7:3717–3726

    PubMed  CAS  Google Scholar 

  • Becker C-M, Hoch W, Betz H (1989) Sensitive immunoassay shows selective association of peripheral and integral membrane proteins of the inhibitory glycine receptor complex. J Neurochem 53:124–131

    PubMed  CAS  Google Scholar 

  • Benavides J, Lopez-Lahoya J, Valdivieso F, Ugarte M (1981) Postnatal development of synaptic glycine receptors in normal and hyperglycinergic rats. J Neurochem 37:315–320

    PubMed  CAS  Google Scholar 

  • Benavides J, Malgouris A, Flamier A, Tur C, Quarteronet F, Begasset F, Camelin JC, Uzan C, Gueremy C, LeFur G (1984) Biochemical evidence that 2-phenyl- 4[2-(4-piperidinyl)ethyl]quinoline, a quinoline derivative with pure anticonflict properties, is a partial agonist of benzodiazepine receptors. Neuropharmacology 23:1129–1136

    PubMed  CAS  Google Scholar 

  • Bertolino M, Vicini S (1988) Voltage-dependent block by strychnine of N-methyl-D- aspartic acid-activated cationic channels in rat cortical neurons in culture. Mol Pharmacol 34:98–103

    PubMed  CAS  Google Scholar 

  • Betz H (1985) The glycine receptor of rat spinàl cord: exploring the site of action of the plant alkaloid strychnine. Angew Chem (Engl) 24:365–370

    Google Scholar 

  • Betz H (1990) Ligand-gated ion channels in the brain: the amino acid receptor family. Neuron 5:383–392

    PubMed  CAS  Google Scholar 

  • Betz H, Becker C-M (1988) The mammalian glycine receptor: biology and structure of a neuronal chloride channel protein. Neurochem Int 13:137–146

    PubMed  CAS  Google Scholar 

  • Beyer C, Roberts LA, Komisaruk BR (1985) Hyperalgesia induced by altered glycinergic activity at the spinal cord. Life Sci 37:875–882

    PubMed  CAS  Google Scholar 

  • Biscoe TJ, Curtis DR (1967) Strychnine and cortical inhibition. Nature 214:914–915

    PubMed  CAS  Google Scholar 

  • Biscoe TJ, Duchen MR (1986) Synaptic physiology of spinal motoneurones of normal and spastic mice: an in vitro study. J Physiol (Lond) 379:275–292

    CAS  Google Scholar 

  • Bormann J, Hamill OP, Sakmann B (1987) Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal cord neurons. J Physiol (Lond) 385:243–286

    CAS  Google Scholar 

  • Braestrup C, Nielsen M (1985) Interaction of pitrazepin with the GABA/ benzodiazepine receptor complex and with glycine receptors. Eur J Pharmacol 118:115–121

    PubMed  CAS  Google Scholar 

  • Braestrup C, Nielsen M, Krogsgaard-Larsen P (1986) Glycine antagonists structurally related to 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol inhibit binding of [3H]strychnine to rat brain membranes. J Neurochem 47:691–696

    PubMed  CAS  Google Scholar 

  • Brehm L, Krogsgaard-Larsen P, Schaumburg K, Johansen JS, Falch E (1986) Glycine antagonists. Synthesis, structure, and biological effects of some bicyclic 5-isoxazolol zwitterions. J Med Chem 29:224–229

    PubMed  CAS  Google Scholar 

  • Bristow DR, Bowery NG, Woodruff GN (1986) Light microscopic autoradiographic localisation of [3H]glycine and [3H]strychnine binding sites in rat brain. Eur J Pharmacol 126:303–307

    PubMed  CAS  Google Scholar 

  • Bruning G, Bauer R, Baumgarten HG (1990) Postnatal development of [3H]flunitrazepam and [3H]strychnine binding sites in rat spinal cord localized by quantitative autoradiography. Neurosci Lett 110:6–10

    PubMed  CAS  Google Scholar 

  • Carpenter MK, Parker I, Miledi R (1988) Expression of GABA and glycine receptors by messenger RNAs from the developing rat cerebral cortex. Proc R Soc Lond [Biol] 234:159–170

    CAS  Google Scholar 

  • Celentano JJ, Gibbs TT, Farb DH (1988) Ethanol potentiates GABA- and glycine- induced chloride currents in chick spinal cord neurons. Brain Res 455:377–380

    PubMed  CAS  Google Scholar 

  • Chiavarelli S, Fennoy LV, Settimj G, DeBarran L (1962) The effect of methoxyphenyl substitutions on the strychnine-like activity of arylazaadamantanes and aryldiazaadamantanols. J Med Chem 5:1293–1297

    CAS  Google Scholar 

  • Choquet D, Korn H (1988) Does ß-alanine activate more than one chloride channel associated receptor? Neurosci Lett 84:329–334

    PubMed  CAS  Google Scholar 

  • Chung E, van Woert MH (1984) DDT myoclonus: sites and mechanism of action. Exp Neurol 85:273–282

    PubMed  CAS  Google Scholar 

  • Chung EY, van Woert MH (1986) Urea myoclonus: possible involvement of glycine. Adv Neurol 43:565–568

    PubMed  CAS  Google Scholar 

  • Chung E, Yocca F, van Woert MH (1985) Urea-induced myoclonus: medullary glycine antagonism as mechanism of action. Life Sci 36:1051–1058

    PubMed  CAS  Google Scholar 

  • Curtis DR, Johnston GAR (1970) Amino acid Transltters in the mammalian central nervous system. Ergeb Physiol 69:98–188

    Google Scholar 

  • Curtis DR, Malik R (1985) Glycine antagonism by RU 5135. Eur J Pharmacol 110:383–384

    PubMed  CAS  Google Scholar 

  • Curtis DR, Hösli L, Johnston GAR, Johnston IH (1968a) The hyperpolarization of spinal motoneurones by glycine and related amino acids. Exp Brain Res 5:235–258

    PubMed  CAS  Google Scholar 

  • Curtis DR, Hösli L, Johnston GAR (1968b) A pharmacological study of the depression of spinal neurones by glycine and related amino acids. Exp Brain Res 6:1–18

    PubMed  CAS  Google Scholar 

  • Curtis DR, Dugan AW, Johnston GAR (1971a) The specificity of strychnine as a glycine antagonist in the mammalian spinal cord. Exp Brain Res 12:547–565

    PubMed  CAS  Google Scholar 

  • Curtis DR, Duggan AW, Felix D, Johnston, GAR (1971b) Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord of the cat. Brain Res 32:69–96

    PubMed  CAS  Google Scholar 

  • Davidoff RA, Aprison MH (1969) Picrotoxin antagonism of the inhibition of interneurons by glycine. Life Sci 8:107–112

    PubMed  CAS  Google Scholar 

  • Dengler R. (1990) The motor unit: physiology, diseases, regeneration. Urban and Schwarzenberg, Munich

    Google Scholar 

  • Drexler G, Sieghart W (1984) Properties of a high affinity binding site for [3H]avermectin Bla. Eur J Pharmacol 99:269–277

    PubMed  CAS  Google Scholar 

  • Drummond J, Johnson G, Nickell DG, Ortwine DF, Bruns RF, Welbaum B (1989) Evaluation and synthesis of aminohydroxyisoxazoles and pyrazoles as potential glycine agonists. J Med Chem 32:2116–2128

    PubMed  CAS  Google Scholar 

  • Dusser de Barenne, JG (1933) The mode and site of action of strychnine on the nervous system. Physiol Rev 13:325–335

    Google Scholar 

  • Eccles JC (1964) The physiology of synapses. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Enna SJ, Möhler H (1987) γ-Aminobutyric acid (GABA) receptors and their association with benzodiazepine recognition sites. In: Meitzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York pp 265–272

    Google Scholar 

  • Erdö SL (1990) Strychnine protection against excitotoxic cell death in primary cultures of rat cerebral cortex. Neurosci Lett 115:341–344

    PubMed  Google Scholar 

  • Evans RH (1978) The effect of amino acids and antagonists on the isolated hemisected spinal cord of the immature rat. Br J Pharmacol 62:171–176

    PubMed  CAS  Google Scholar 

  • Faingold CL, Hoffmann, WE, Caspary, D.M. (1985) Mechanisms of sensory seizures: brain-stem neuronal response changes and convulsant drugs. Fed Proc 44:2436–2441

    PubMed  CAS  Google Scholar 

  • Ferenci P, Pappas SC, Munson PJ, Heenson K, Jones EA (1984) Changes in the status of neurotransmitter receptors in a rabbit model of hepatic encephalopathy. Hepatology 4:186–191

    PubMed  CAS  Google Scholar 

  • Franz DN (1985) Central nervous system stimulants. In: Goodman Gilman A, Goodman LS, Rall TW, Murad F (eds) The pharmacological basis of therapeutics, 7th edn. MacMillan, New York, pp 582–588

    Google Scholar 

  • Fritz LC, Wang CC, Gorio A (1979) Avermectin Bla irreversibly blocks postsynaptic potentials at the lobster neuromuscular junction by reducing muscle membrane resistance. Proc Natl Acad Sci U.S.A. 76:2062–2066

    PubMed  CAS  Google Scholar 

  • Frostholm A, Rotter A (1985) Glycine receptor distribution in mouse CNS: autoradiographic localization of [3H]strychnine binding sites. Brain Res Bull 15:473–486

    PubMed  Google Scholar 

  • Frostholm A, Rotter A (1986) Autoradiographic localization of receptors in the cochlear nucleus of the mouse. Brain Res Bull 16:189–203

    PubMed  CAS  Google Scholar 

  • Fry JP, Phelan PP (1985) Interaction of glycine receptor ligands in the normal mouse spinal cord. J Physiol 373:21

    Google Scholar 

  • Gähwiler BH, Maurer R, Wuthrich HJ (1984) Pitrazepin, a novel GABAa antagonist. Neurosci Lett 45:311–316

    PubMed  Google Scholar 

  • Galli A, Nocchi M, Sciarra P (1983) Evidence of enrichment in glycine receptors of crude synaptic membranes from rat spinal cord following Triton X-100 treatment. Biochem Biophys Res Commun 112:809–816

    PubMed  CAS  Google Scholar 

  • Garcia-Calvo M, Ruiz-Gomez A, Vazquez J, Morato E, Valdivieso F, Mayor F Jr (1989) Functional reconstitution of the glycine receptor. Biochemistry 28:6405–6409

    PubMed  CAS  Google Scholar 

  • Geyer SW, Gudden W, Betz H, Gnahn H, Weindl A (1987) Co-localization of choline acetyltransferase and postsynaptic glycine receptors in motoneurons of rat spinal cord demonstrated by immunocytochemistry. Neurosci Lett 82:11–15

    PubMed  CAS  Google Scholar 

  • Gillberg PG, Aquilonius SM (1985) Cholinergic, opioid and glycine receptor binding sites localized in human spinal cord by in vitro autoradiography. Changes in amyotrophic lateral sclerosis. Acta Neurol Scand 72:299–306

    PubMed  CAS  Google Scholar 

  • Glendenning KK, Baker BN (1988) Neuroanatomieal distribution of receptors for three potential inhibitory neurotransmitters in the brainstem auditory nuclei of the cat. J Comp Neurol 275:288–308

    PubMed  CAS  Google Scholar 

  • Goldinger A, Müller WE (1980) Stereospecific interaction of bicucculline with specific [3H]strychnine binding to the glycine receptor of rat spinal cord. Neurosci Lett 16:91–95

    PubMed  CAS  Google Scholar 

  • Goldinger A, Müller WE, Wollert U (1981) Inhibition of glycine and GABA receptor binding by several opiate agonists and antagonists. Gen Pharmacol 12: 477–479

    PubMed  CAS  Google Scholar 

  • Gosselin RE, Hodge HC, Smith RP, Gleason MN (1976) Clinical toxicology of commercial products, 4th edn. Williams and Wilkins, Baltimore, pp 303–307

    Google Scholar 

  • Graham D, Pfeiffer F, Betz H (1981) UV-light induced cross-linking of strychnine to the glycine receptor of rat spinal cord membranes. Biochem Biophys Res Commun 102:1330–1335

    PubMed  CAS  Google Scholar 

  • Graham D, Pfeiffer F, Betz H (1982) Avermectin Bla inhibits the binding of strychnine to the glycine receptor of rat spinal cord. Neurosci Lett 29:173–176

    PubMed  CAS  Google Scholar 

  • Graham D, Pfeiffer F, Betz H (1983) Photoaffinity-labelling of the glycine receptor of rat spinal cord. Eur J Biochem 131:519–525

    PubMed  CAS  Google Scholar 

  • Graham D, Pfeiffer F, Simler R, Betz H (1985) Purification and characterization of the glycine receptor of pig spinal cord. Biochemistry 24:990–994

    PubMed  CAS  Google Scholar 

  • Grenningloh G, Rienitz A, Schmitt B, Methfessel C, Zensen M, Beyreuther K, Gundelfinger ED, Betz H (1987a) The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328:215–220

    PubMed  CAS  Google Scholar 

  • Grenningloh G, Gundelfinger E, Schmitt B, Betz H, Darlison MG, Barnard EA, Schofield PR, Seeburg PH (1987b) Glycine vs GABA receptors (Letter). Nature 330:25–26

    PubMed  CAS  Google Scholar 

  • Grenningloh G, Schmieden V, Schofield P, Seeburg PH, Siddique T, Mohandas T K, Becker C-M, Betz H (1990a) Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes. EMBO J 9:771–776

    PubMed  CAS  Google Scholar 

  • Grenningloh G, Pribilla I, Prior P, Multhaup G, Beyreuther K, Taleb O, Betz H (1990b) Cloning and expression of the 58 kd beta subunit of the inhibitory glycine receptor. Neuron 4:963–970

    PubMed  CAS  Google Scholar 

  • Gundersen CB, Miledi R, Parker I (1984) Properties of human brain glycine receptors expressed in Xenopus oocytes. Proc R Soc Lond [Biol] 221:235–244

    CAS  Google Scholar 

  • Gundlach, AL (1990) Disorder of the inhibitory glycine receptor: inherited myoclonus in Hereford calves. FASEB J 4:2761–2766

    PubMed  CAS  Google Scholar 

  • Gundlach AL, Beart PM (1981) [3H]Strychnine binding suggests glycine receptors in the ventral tegmental area of rat brain. Neurosci Lett 22:289–294

    CAS  Google Scholar 

  • Heidrich H, Ibe K, Klinge D (1969) Akute Vergiftung mit Strychnin-N- oxydhydrochlorid (Movellan-Tabletten(r)) und ihre Behandlung mit Diazepam. Arch Toxicol 24:188–200

    CAS  Google Scholar 

  • Hershenson MF, Prodan KA, Kochman RL, Bloss JL, Mackerer CR (1977) Synthesis of ß-spiro[pyrrolodinoindolines], their binding to the glycine receptor, and in vivo biological activity. J Med Chem 20:1448–1451

    PubMed  CAS  Google Scholar 

  • Hill RG, Simmonds MA, Straughan DW (1973) Artiino acid antagonists and the depression of cuneate neurones by γ-aminobutyrié acid (GABA) and glycine. Br J Pharmacol 47:642–643

    Google Scholar 

  • Hill RG, Simmonds MA, Straughan DW (1976) Antagonism of γ-aminobutyric acid and glycine by convulsants in the cuneate nucleus of cat. Br J Pharmacol 56:9–19

    PubMed  CAS  Google Scholar 

  • Hirsch JA, Oertel D (1988) Synaptic connections in the dorsal cochlear nucleus of mice, in vitro. J Physiol (Lond) 396:549–562

    CAS  Google Scholar 

  • Hoch H, Betz H, Becker C-M (1989) Primary cultures of mouse spinal cord express the neonatal isoform of the inhibitory glycine receptor. Neuron 3:339–348

    PubMed  CAS  Google Scholar 

  • Horikoshi T, Asanuma A, Yanagisawa K, Anzai K, Goto S (1988a) Taurine and ß-alanine act on both GABA and glycine receptors in Xenopus oocytes injected with mouse brain messenger RNA. Brain Res 464:97–105

    PubMed  CAS  Google Scholar 

  • Horikoshi T, Asanuma A, Yanagisawa K, Goto S (1988b) Taurine modulates glycine response in Xenopus oocytes injected with messenger RNA from mouse brain. Brain Res 464:243–246

    PubMed  CAS  Google Scholar 

  • Houamed KM, Bilbe G, Smart TG, Constanti A, Brown DA, Barnard EA, Richards BM (1984) Expression of functional GABA, glycine and glutamate receptors in Xenopus oocytes injected with rat brain mRNA. Nature 310:318–321

    PubMed  CAS  Google Scholar 

  • Hunt P, Clemens-Jewery S (1981) A steroid derivative, R 5135, antagonizes the GABA/benzodiazepine receptor interaction. Neuropharmacology 20:357–361

    PubMed  CAS  Google Scholar 

  • Jackson G, Diggle GE, Bourke IG (1971) Strychnine poisoning treated successfully with diazepam. Br Med J 3:519–520

    PubMed  CAS  Google Scholar 

  • Jaffe JH, Martin WR (1990) Opioid analgesics and antagonists. In: Goodman Gilman A, Rail TW, Nies AS, Taylor P (eds) The pharmacological basis of therapeutics, 8th edn. Pergamon, New York, pp 485–521

    Google Scholar 

  • Jäger J, Wässle H (1987) Localization of glycine uptake and receptors in the cat retina. Neurosci Lett 75:147–151

    PubMed  Google Scholar 

  • Karschin A, Wässle H (1990) Voltage and transmitter-gated currents in isolated rod bipolar cells of the retina. J Neurophysiol 63:860–876

    PubMed  CAS  Google Scholar 

  • Kehne JH, Davis M (1984) Strychnine increases acoustic startle amplitude but does not alter short-term or long-term habituation. Behav Neurosci 98:955–968

    PubMed  CAS  Google Scholar 

  • Krishtal OA, Osipchuk YV, Vrublevsky SV (1988) Properties of glycine-activated conductances in rat brain neurones. Neurosci Lett 84:271–276

    PubMed  CAS  Google Scholar 

  • Krnjevic K (1981) Transmitters in motor systems. In: Geiger SR (ed) Handbook of physiology. Am Physiol Soc, Baltimore, pp 107–154

    Google Scholar 

  • Krogsgaard-Larsen P, Johnston GAR, Curtis DR, Game CJA, McCulloch RM (1975) Structure and biological activity of a series of conformationally restricted analogues of GABA. J Neurochem 25:803–809

    PubMed  CAS  Google Scholar 

  • Krogsgaard-Larsen P, Hjeds H, Curtis DR, Leah JD, Peet MJ (1982) Glycine antagonists structurally related to muscimol, THIP, or isoguvacine. J Neurochem 39:1319–1324

    PubMed  CAS  Google Scholar 

  • Kuhse J, Schmieden V, Betz H (1990a) A single amino acid exchange alters the pharmacology of neonatal rat glycine receptor subunit. Neuron 5:867–873

    PubMed  CAS  Google Scholar 

  • Kuhse J, Schmieden V, Betz H (1990b) Identification and functional expression of a novel ligand binding subunit of the inhibitory glycine receptor. J Biol Chem 265:22317–22320

    PubMed  CAS  Google Scholar 

  • Kuhse J, Kuryatov A, Maulet Y, Malosio M-L, Schmieden V, Betz H (1991) Alternative splicing generates two isoforms of the inhibitory glycine receptor. FEBS Lett 283:73–77

    PubMed  CAS  Google Scholar 

  • Langosch D, Thomas L, Betz H (1988) Conserved quaternary structure of ligand- gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc Natl Acad Sci USA 85:7394–7398

    PubMed  CAS  Google Scholar 

  • Langosch D, Betz H, Becker C-M (1990a) Molecular structure and developmental regulation of the inhibitory glycine receptor. In: Ottersen O, Storm-Mathisen V (eds) Glycine neurotransmission. Wiley, Chichester, pp 67–82

    Google Scholar 

  • Langosch D, Becker C-M, Betz H (1990b) The inhibitory glycine receptor: ligand- gated chloride channel of the central nervous system. Eur J Biochem 194:1–8

    PubMed  CAS  Google Scholar 

  • Langosch D, Hartung K, Grell E, Bamberg E, Betz H (1991) Ion channel formation by synthetic transmembrane segments of the inhibitory glycine receptor-a model study. Biochim Biophys Acta 1063:36–44

    PubMed  CAS  Google Scholar 

  • LeFort D, Henke H, Cuenod M (1978) Glycine specific [3H]strychnine binding in the pigeon CNS. J Neurochem 30:1287–1291

    PubMed  CAS  Google Scholar 

  • Lewis CA, Ahmed Z, Faber DS (1989) Characteristics of glycine-activated conductances in cultured medullary neurons from embryonic rat. Neurosci Lett 96:185–190

    PubMed  CAS  Google Scholar 

  • Lloyd KG, de Montis G, Javoy-Agid F, Beaumont K, Lowenthal A, Constantinidis J, Agid Y (1983a) Glycine receptors in the human brain: characterization of 3H-strychnine binding and status in pathological conditions. Adv Biochem Psychopharmacol 36:233–238

    PubMed  CAS  Google Scholar 

  • Lloyd KG, de Montis G, Broekkamp CL, Thuret F, Worms P (1983b) Neurochemical and neuropharmacological indications for the involvement of GABA and glycine receptors in neuropsychiatric disorders. Adv Biochem Psychopharmacol 37:137–148

    PubMed  CAS  Google Scholar 

  • Long SK, Evans RH, Krijzer F (1989) Effects of depressant amino acids and antagonists on an in vitro spinal cord preparation from the adult rat. Neuropharmacology 28:683–688

    PubMed  CAS  Google Scholar 

  • Longo VG, Silvestrini B, Bovert D (1959) An investigation of convulsant properties of the 5–7-diphenyl-l-3-diazaadamantan-6-ol (1757 I.S.) J Pharmacol Exp Ther 126:41–49

    PubMed  CAS  Google Scholar 

  • Mackerer CR, Kochman RL, Shen TF, Hershenson FM (1977) The binding of strychnine and strychnine analogs to synaptic membranes of rat brainstem and spinal cord. J Pharmacol Exp Ther 201:326–331

    PubMed  CAS  Google Scholar 

  • Maksay G (1990) Dissociation of muscimol, SR 95531, and strychnine from GABA A and glycine receptors, respectively, suggests similar cooperative interactions. J Neurochem 54:1961–1966

    PubMed  CAS  Google Scholar 

  • Malosio M-L, Grenningloh G, Kuhse J, Schmieden V, Schmitt B, Prior P, Betz H (1991a) Alternative splicing generates two variants of the alpha 1 subunit of the inhibitory glycine receptor. J Biol Chem 266:2048–2053

    PubMed  CAS  Google Scholar 

  • Malosio M-L, Marquèze-Poney B, Kuhse J, Betz H (1991b) Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO J 10:2401–2409

    PubMed  CAS  Google Scholar 

  • Marvizón JC, Skolnick P (1988a) Enhancement of t-[35S]butylbicyclophosphoro thionate and [3H]strychnine binding by monovalent anions reveals similarities between γ-aminobutyric acid- and glycine-gated chloride channels. J Neurochem 50:1632–1639

    PubMed  Google Scholar 

  • Marvizón JC, Skolnick P (1988b) Anion regulation of [3H]strychnine binding to glycine-gated chloride channels is explained by the presence of two anion binding sites. Mol Pharmacol 34:806–813

    PubMed  Google Scholar 

  • Marvizón JC, Vazquez J, Garcia-Calvo M, Mayor F Jr, Ruiz-Gomez A, Valdivieso F, Benavides J (1986a) The glycine receptor: pharmacological studies and mathematical modeling of the allosteric interaction between the glycine- and strychnine-binding sites. Mol Pharmacol 30:590–597

    PubMed  Google Scholar 

  • Marvizón JC, Garcia-Calvo M, Vazquez J, Mayor F Jr, Ruiz-Gomez A, Valdiviesco F, Benavides J (1986b) Activation and inhibition of 3H-strychnine binding to the glycine receptor by Eccles’ anions: modulatory effects of cations. Mol Pharmacol 30:598–602

    PubMed  Google Scholar 

  • McNamara D, Dingledine R (1990) Dual effect of glycine on NMDA-induced neurotoxicity in rat cortical cultures. J Neurosci 10:3970–3976

    PubMed  CAS  Google Scholar 

  • Michaud JC, Mienville JM, Chambon JP, Biziere K (1986) Interactions between three pyridazinyl-GABA derivatives and central GABA and glycine receptors in the rat, an in vivo microiontophoretic study. Neuropharmacology 25:1197–1203

    PubMed  CAS  Google Scholar 

  • Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29:365–402

    PubMed  CAS  Google Scholar 

  • Müller WE, Snyder SH (1978) Strychnine binding associated with synaptic glycine receptors in rat spinal cord membranes: ionic influences. Brain Res 147:107–116

    PubMed  Google Scholar 

  • Müller F, Wässle H, Voigt T (1988) Pharmacological modulation of the rod pathway in the cat retina. J Neurophysiol 59:1657–1672

    PubMed  Google Scholar 

  • Naas E, Zilles K, Gnahn H, Betz H, Becker C-M, Schröder H (1991) Glycine receptor immunoreactivity in rat and human cerebral cortex. Brain Res 561: 139–146

    PubMed  CAS  Google Scholar 

  • Nicholson GM, Spence I, Johnston GAR (1988) Differing actions of convulsant and nonconvulsant barbiturates: an electrophysiological study in the isolated spinal cord of the rat. Neuropharmacology 27:459–465

    PubMed  CAS  Google Scholar 

  • Obata K, Highstein SM (1970) Blocking by picrotoxin of both vestibular inhibition and GABA action on rabbit oculomotor neurons. Brain Res 18:538–541

    PubMed  CAS  Google Scholar 

  • O’Connor VM (1989) Chemical modification of overlapping but conformationally distinct recognition sites for glycine and strychnine in isolated spinal cord membranes. J Physiol (Lond) 415:49 P

    Google Scholar 

  • Olsen RW, Tobin AJ (1990) Molecular biology of GABAa receptors. FASEB J 4:1469–1480

    PubMed  CAS  Google Scholar 

  • Ondo JG, Buckholtz NS (1983) The central actions of glycine and strychnine on prolactin and LH secretion. Brain Res Bull 11:7–10

    PubMed  CAS  Google Scholar 

  • Parker I, Sumidawa K, Miledi R (1985) Messenger RNA from bovine retina induces kainate and glycine receptors in Xenopus oocytes. Proc R Soc Lond [Biol] 225:99–106

    CAS  Google Scholar 

  • Parker I, Sumikawa K, Miledi R (1988) Responses to GABA, glycine and ß-alanine induced in Xenopus oocytes by messenger RNA from chick and rat brain. Proc R Soc Lond [Biol] 233:201–216

    CAS  Google Scholar 

  • Perper JA (1985) Fatal strychnine poisoning - a case report and review of the literature. J Forensic Sci 30:1248–1255

    PubMed  CAS  Google Scholar 

  • Pfeiffer F, Betz H (1981) Solubilization of the glycine receptor from rat spinal cord. Brain Res 226:273–279

    PubMed  CAS  Google Scholar 

  • Pfeiffer F, Graham D, Betz H (1982) Purification by affinity chromatography of the glycine receptor of rat spinal cord. J Biol Chem 257:9389–9393

    PubMed  CAS  Google Scholar 

  • Pfeiffer F, Simler R, Grenningloh G, Betz H (1984) Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. Proc Natl Acad Sci USA 81:7224–7227

    PubMed  CAS  Google Scholar 

  • Phelan PP, Fry JP, Martin IL, Johnston GAR (1989) Polyclonal antibodies to the glycine receptor antagonist strychnine. J Neurochem 52:1481–1486

    PubMed  CAS  Google Scholar 

  • Poulsson E (1920) Die Strychningruppe. In: Hefftner A (ed) Handbuch der Experimentellen Pharmakologie, vol 2. Springer, Berlin

    Google Scholar 

  • Probst A, Cortes R, Palacios JM (1986) The distribution of glycine receptors in the human brain. A light microscopic autoradiographic study using [3H]strychnine. Neuroscience. 17:11–35

    PubMed  CAS  Google Scholar 

  • Rees R, Smith H (1967) Structure and biological activity of some reduction products of strychnine, brucine, and their congeners. J Med Chem 10:624–627

    CAS  Google Scholar 

  • Rienitz A, Becker C-M, Betz H, Schmitt B (1987) The chloride channel blocking agent, t-butyl bicyclophosphorothionate, binds to the gamma-aminobutyric acid- benzodiazepine, but not to the glycine receptor in rodents. Neurosci Lett 76:91–95

    PubMed  CAS  Google Scholar 

  • Riquelme G, Morato E, Lopez E, Ruiz-Gomez A, Ferragut JA, Gonzalez-Ros JM, Mayor F Jr (1990) Agonist binding to purified glycine receptor reconstituted into giant liposomes elicits two types of chloride currents. FEBS Lett 276: 54–58

    PubMed  CAS  Google Scholar 

  • Rote Liste (1991) Cantor, Aulendorf

    Google Scholar 

  • Rotter A, Schultz CM, Frostholm A (1984) Regulation of glycine receptor binding in the mouse hypoglossal nucleus in response to axotomy. Brain Res Bull 13:487–492

    PubMed  CAS  Google Scholar 

  • Ruiz-Gomez A, Fernandez-Shaw C, Valdivieso F, Mayor F Jr (1989a) Chemical modification of the glycine receptor with fluorescein isothiocyanate specifically affects the interaction of glycine with its binding site. Biochem Biophys Res Commun 160:374–381

    PubMed  CAS  Google Scholar 

  • Ruiz-Gómez A, Garcia-Calvo M, Vazquez J, Marvizòn JC, Valdivieso F, Mayor F Jr (1989b) Thermodynamics of agonist and antagonist interaction with the strychnine-sensitive glycine receptor. J Neurochem 52:1775–1780

    PubMed  Google Scholar 

  • Ruiz-Gómez A, Morato E, Garcia-Calvo M, Valdivieso F, Mayor F Jr (1990) Localization of the strychnine binding site on the 48-kilodalton subunit of the glycine receptor. Biochemistry 29:7033–7040

    PubMed  Google Scholar 

  • Ruiz-Gómez A, Vaello ML, Valdivieso F, Mayor F Jr (1991a) Phosphorylation of the 48-kDa subunit of the glycine receptor by protein kinase C. J Biol Chem 266:559–566

    PubMed  Google Scholar 

  • Ruiz-Gómez A, Fernandez-Shaw C, Morato E, Marvizòn JC, Vazquez J, Valdivieso F, Mayor F Jr (1991b) Sulfhydryl groups modulate the allosteric interaction between glycine binding sites at the inhibitory glycine receptor. J Neurochem 56:1690–1697

    PubMed  Google Scholar 

  • Ryan GP, Hackman JC, Davidoff, RA (1984) Spinal seizures and excitatory amino acid-mediated synaptic transmission. Neurosci Lett 44:161–166

    PubMed  CAS  Google Scholar 

  • Sanes DH, Wooten GF (1987) Development of glycine receptor distribution in the lateral superior olive of the gerbil. J Neurosci 7:3803–3811

    PubMed  CAS  Google Scholar 

  • Sanes DH, Geary WA, Wooten GF, Rubel EW (1987) Quantitative distribution of the glycine receptor in the auditory brain stem of the gerbil. J Neurosci 7:3793–3802

    PubMed  CAS  Google Scholar 

  • Schaeffer JM, Anderson SM (1981) Identification of strychnine binding sites in the rat retina. J Neurochem 36:1597–1600

    PubMed  CAS  Google Scholar 

  • Schaffner AE, St John PA, Barker JL (1987) Fluorescence-activated cell sorting of embryonic mouse and rat motoneurons and their long-term survival in vitro. J Neurosci 7:3088–3104

    PubMed  CAS  Google Scholar 

  • Schmieden V, Grenningloh G, Schofield PR, Betz H (1989) Functional expression in Xenopus oocytes of the strychnine binding 48 kd subunit of the glycine receptor. EMBO J 8:695–700

    PubMed  CAS  Google Scholar 

  • Schmitt B, Knaus P, Becker C-M, Betz H (1987) The Mr 93000 polypeptide of the postsynaptic glycine receptor is a peripheral membrane protein. Biochemistry 26:805–811

    PubMed  CAS  Google Scholar 

  • Schröder S, Hoch W, Becker C-M, Grenningloh G, Betz H (1991) Mapping of antigenic epitopes on the α1 subunit of the inhibitory glycine receptor. Biochemistry 30:42–47

    PubMed  Google Scholar 

  • Sigel E, Baur R (1988) Effect of avermectin Bla on chick neuronal γ-aminobutyrate receptor channels expressed in Xenopus oocytes. Mol Parmacol 32:749–752

    Google Scholar 

  • Simmonds MA (1983) Depolarizing responses to glycine, beta-alanine and muscimol in isolated optic nerve and cuneate nucleus. Br J Pharmacol 79:799–806

    PubMed  CAS  Google Scholar 

  • Simmonds MA (1986) Classification of inhibitory amino acid receptors in the mammalian nervous system. Med Biol 64:301–311

    PubMed  CAS  Google Scholar 

  • Smith EB, Bowser-Riley F, Daniels S, Dunbar IT, Harrison CB, Paton WB (1984) Species variation and the mechanism of pressure-anaesthetic interactions. Nature 311:56–57

    PubMed  CAS  Google Scholar 

  • Song YM, Huang LY (1990) Modulation of glycine receptor chloride channels by cAMP-dependent protein kinase in spinal trigeminal neurons. Nature 348:242–245

    PubMed  CAS  Google Scholar 

  • Sontheimer H, Becker C-M, Pritchett DP, Schofield PR, Grenningloh G, Kettenmann H, Betz H, Seeburg PH (1989) Functional chloride channels by mammalian cell expression of rat glycine receptor subunit. Neuron 2:1491–1497

    PubMed  CAS  Google Scholar 

  • Squires RF, Casida JE, Richardson M, Saedrup E (1983) [55S]t-Butylcyclo- phosphorothionate binds with high affinity to brain specific sites coupled to γ-aminobutyric acid-A and ion recognition sites. Mol Parmacol 23:326–336

    CAS  Google Scholar 

  • Srinivasan Y, Guzikowski AP, Haugland RP, Angelides KJ (1990) Distribution and lateral mobility of glycine receptors on cultured spinal cord neurons. J Neurosci 10:985–995

    PubMed  CAS  Google Scholar 

  • St John PA, Wayne MK, Mazetta JS, Lange GD, Barker JL (1986) Analysis and isolation of embryonic mammalian neurons by fluorescence-activated cell sorting. J Neurosci 6:1492–1512

    PubMed  CAS  Google Scholar 

  • Takahashi T (1984) Inhibitory miniature synaptic potentials in rat motoneurons. Proc R Soc Lond [Biol] 221:103–109

    CAS  Google Scholar 

  • Talman WT (1988) Glycine microinjected in the rat dorsal vagal nucleus increases arterial pressure. Hypertension 11:664–667

    PubMed  CAS  Google Scholar 

  • Talman WT, Robertson SC (1989) Glycine, like glutamate, microinjected into the nucleus tractus solitarii of rat decreases arterial pressure and heart rate. Brain Res 16(477) ;7–13

    Google Scholar 

  • Teuscher E, Lindeqifist U (1988) Biogene Gifte. Akademie, Berlin

    Google Scholar 

  • Ticku MK, Ban M, Olsen RW (1978) Binding of [3H]a-dihydropicrotoxinin, a γ-aminobutyric acid synaptic antagonist, to rat brain membranes. Mol Pharmacol 14:391–402

    PubMed  CAS  Google Scholar 

  • Tokutomi N, Kaneda M, Akaike N (1989) What confers specificity on glycine for its receptor site? Br J Pharmacol 97:353–360

    PubMed  CAS  Google Scholar 

  • Tribble GL, Schwindt PC, Crill WE (1983) Reduction of postsynaptic inhibition tolerated before seizure initiation: spinal cord. Exp Neurol 80:288–303

    PubMed  CAS  Google Scholar 

  • Triller A, Cluzeaud F, Pfeiffer F, Betz H, Korn H (1985) Distribution of glycine receptors at central syhnapses: an immunoelectron microscopy study. J Cell Biol 101:683–688

    PubMed  CAS  Google Scholar 

  • Triller A, Cluzeaud F, Korn H (1987) Gamma-aminobutyric acid-containing terminals can be apposed to glycine receptors at central synapses. J Cell Biol 104:947–956

    PubMed  CAS  Google Scholar 

  • Triller A, Seitanidon T, Franksson O, Korn H (1990) Size and shape of glycine receptor clusters in a central neuron exhibit a somato-dendritic gradient. New Biol 2:637–641

    PubMed  CAS  Google Scholar 

  • Van den Pol AN, Gores T (1988) Glycine and glycine receptor immunoreactivity in brain and spinal cord. J Neurosci 8:472–492

    PubMed  Google Scholar 

  • Von Hippel A (1873) Über die Wirkungen des Strychnins auf das normale und kranke Auge. Springer, Berlin

    Google Scholar 

  • Wenthold RJ, Parakkal MH, Oberdorfer MD, Altschuler RA (1988) Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pig. J Comp Neurol 276:423–435

    PubMed  CAS  Google Scholar 

  • Werman R, Davidoff RA, Aprison MH (1968) Inhibitory action of glycine on spinal neurons in the cat. Nature 214:681–683

    Google Scholar 

  • White WF (1985) The glycine receptor in the mutant mouse spastic (spa): strychnine binding characteristics and pharmacology. Brain Res 329:1–6

    PubMed  CAS  Google Scholar 

  • White WF, O’Gorman S, Roe AW (1990) Three-dimensional autoradiographic localization of quench-corrected glycine receptor specific activity in the mouse brain using 3H-strychnine as the ligand. J Neurosci 10:795–813

    PubMed  CAS  Google Scholar 

  • Williams M, Risley EA (1982) Interaction of avermectins with [3H]ß-carboline-3- carboxylate ethyl ester and [3H]diazepam binding sites in rat brain cortical membranes. Eur J Pharmacol 77:307–315

    PubMed  CAS  Google Scholar 

  • Woodward RB, Cava MP, Ollis WD, Hunger A, Daeniker HU, Schenker K (1954) The total synthesis of strychnine. J Am Soc Chem 76:4749–4751

    CAS  Google Scholar 

  • Wu SH, Oertel D (1990) Inhibitory circuitry in the ventral cochlear nucleus is probably mediated by glycine. J Neurosci 6:2691–2706

    Google Scholar 

  • Yadid G, Youdim MB, Zinder O (1990) High-affinity strychnine binding to adrenal medulla chromaffin cell membranes. Eur J Pharmacol 175:365–366

    PubMed  CAS  Google Scholar 

  • Yaksh TL (1989) Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 37:111–123

    PubMed  CAS  Google Scholar 

  • Yaksh TL, Harty GJ (1988) Pharmacology of the allodynia in rats evoked by high dose intrathecal morphine. J Pharmacol Exp Ther 244:501–507

    PubMed  CAS  Google Scholar 

  • Young AB, Snyder SH (1973) Strychnine binding associated with glycine receptors of the central nervous system. Proc Natl Acad Sci USA 70:2832–2836

    PubMed  CAS  Google Scholar 

  • Young AB, Snyder SH (1974a) Strychnine binding in rat spinal cord membranes associated with the synaptic glycine receptor: cooperativity of glycine interactions. Mol Pharmacol 10:790–809

    CAS  Google Scholar 

  • Young AB, Snyder SH (1974b) The glycine synaptic receptor: evidence that strychnine binding is associated with the ionic conductance mechanism. Proc Natl Acad Sci USA 71:4002–4005

    PubMed  CAS  Google Scholar 

  • Young AB, Zukin SR, Snyder SH (1974) Interaction of benzodiazepines with central nervous glycine receptors: possible mechanism of action. Proc Natl Acad Sci USA 71:2246–2250

    PubMed  CAS  Google Scholar 

  • Zarbin MA, Wamsley JK, Kuhar MJ (1981) Glycine receptor: light microscopic autoradiographic localization with [3H] strychnine. J Neurosci 1:532–547

    PubMed  CAS  Google Scholar 

  • Zieglgänsberger W, Herz A (1971) Changes of cutaneous receptive fields of spinocervical tract neurones and other dorsal horn neurons by microelectrophoretically administered amino acids. Exp Brain Res 13:111–126

    PubMed  Google Scholar 

  • Zukin SR, Young AB, Snyder SH (1975) Development of the synaptic glycine receptor in chick embryo spinal cord. Brain Res 83:525–530

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Becker, CM. (1994). Convulsants Acting at the Inhibitory Glycine Receptor. In: Herken, H., Hucho, F. (eds) Selective Neurotoxicity. Springer Study Edition, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85117-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85117-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57815-4

  • Online ISBN: 978-3-642-85117-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics