Skip to main content

Correlation Between Physicochemical Properties and Quality of Biodiesel

  • Chapter
  • First Online:
Application of Thermo-fluid Processes in Energy Systems

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Biodiesel produced from renewable feedstocks represents a sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Biodiesel offers many benefits over conventional petroleum fuels, including the wide regional distribution of biomass feedstocks, high greenhouse gas reduction potential, biodegradability and a significant contribution to sustainability. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent when comparing one feedstock to the next in terms of chain length, degree of unsaturation and number of double bonds—all of which determine the fuel properties and quality of biodiesel as a diesel engine fuel. In this chapter, biodiesel feedstocks, production processes, chemical compositions, standards, physicochemical properties and in-use performance are discussed. A correlation study between the properties of biodiesel and its chemical composition is analysed using principal component analysis (PCA). The necessary data regarding the chemical composition and fuel properties of biodiesel were obtained from more than 100 papers published in recognised international journals. The PCA indicated that individual biodiesel properties have a complex correlation with the parameters of chemical composition. The average chain length and average number of double bonds are the most influential parameters that affect all biodiesel properties. The results of this analysis are presented graphically and discussed in this chapter. Therefore, this chapter will provide the reader a clearer understanding of the physicochemical properties of biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, M., Ullah, K., Khan, M., Ali, S., Zafar, M., & Sultana, S. (2011). Quantitative and qualitative analysis of sesame oil biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33, 1239–1249.

    Article  Google Scholar 

  2. Albuquerque, M., Machado, Y., Torres, A., Azevedo, D., Cavalcante JR, C., Firmiano, L. & Parente JR, E. (2009). Properties of biodiesel oils formulated using different biomass sources and their blends. Renewable Energy, 34, 857–859.

    Google Scholar 

  3. Alcantara, R., Amores, J., Canoira, L. T., Fidalgo, E., Franco, M., & Navarro, A. (2000). Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass and Bioenergy, 18, 515–527.

    Article  Google Scholar 

  4. Ali, Y., Hanna, M., & Cuppett, S. (1995). Fuel properties of tallow and soybean oil esters. Journal of the American Oil Chemists’ Society, 72, 1557–1564.

    Article  Google Scholar 

  5. Ali, Y., Hanna, M. A., & Cuppett, S. L. (1995). Fuel properties of tallow and soybean oil esters. Journal of the American Oil Chemists’ Society, 72, 1557–1564.

    Article  Google Scholar 

  6. Alleman, T., & Mccormick, R. L. (2006). Analysis of coconut-derived biodiesel and conventional diesel fuel samples from the Philippines. US DOE, NREL/MP-540-38643.

    Google Scholar 

  7. Antolın, G., Tinaut, F., Briceno, Y., Castano, V., Perez, C., & Ramırez, A. (2002). Optimisation of biodiesel production by sunflower oil transesterification. Bioresource Technology, 83, 111–114.

    Google Scholar 

  8. Aransiola, E., Ojumu, T., Oyekola, O., & Ikhuomoregbe, D. (2012). A study of biodiesel production from non-edible oil seeds: A comparative study. The Open Conference Proceedings Journal, M1.

    Google Scholar 

  9. Armas, O., Yehliu, K., & Boehman, A. L. (2010). Effect of alternative fuels on exhaust emissions during diesel engine operation with matched combustion phasing. Fuel, 89, 438–456.

    Article  Google Scholar 

  10. Atapour, M., & Kariminia, H.-R. (2011). Characterization and transesterification of Iranian bitter almond oil for biodiesel production. Applied Energy, 88, 2377–2381.

    Article  Google Scholar 

  11. Bannikov, M. (2011). Combustion and emission characteristics of Mustard biodiesel. In 6th International Advanced Technologies Symposium (IATS’11), Turkey (pp.1–5).

    Google Scholar 

  12. Barnwal, B., & Sharma, M. (2005). Prospects of biodiesel production from vegetable oils in India. Renewable and Sustainable Energy Reviews, 9, 363–378.

    Article  Google Scholar 

  13. Behçet, R. (2011). Performance and emission study of waste anchovy fish biodiesel in a diesel engine. Fuel Processing Technology, 92, 1187–1194.

    Article  Google Scholar 

  14. Benjumea, P., Agudelo, J., & Agudelo, A. (2008). Basic properties of palm oil biodiesel–diesel blends. Fuel, 87, 2069–2075.

    Article  Google Scholar 

  15. Berrios, M., Gutiérrez, M., Martín, M., & Martin, A. (2009). Application of the factorial design of experiments to biodiesel production from lard. Fuel Processing Technology, 90, 1447–1451.

    Article  Google Scholar 

  16. Betiku, E., & Adepoju, T. F. (2013). Methanolysis optimization of sesame (Sesamum indicum) oil to biodiesel and fuel quality characterization. International Journal of Energy and Environmental Engineering, 4, 1–8.

    Article  Google Scholar 

  17. Canakci, M. (2005). Performance and emissions characteristics of biodiesel from soybean oil. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219, 915–922.

    Google Scholar 

  18. Canakci, M., & Sanli, H. (2008). Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of Industrial Microbiology and Biotechnology, 35, 431–441.

    Article  Google Scholar 

  19. Canakci, M., & van Gerpen, J. H. (2003). Comparison of engine performance and emissions for petroleum diesel fuel, yellow grease biodiesel, and soybean oil biodiesel. Transactions of the ASAE, 46, 937–944.

    Google Scholar 

  20. Candeia, R., Silva, M., Carvalho Filho, J., Brasilino, M., Bicudo, T., Santos, I., & Souza, A. 2009. Influence of soybean biodiesel content on basic properties of biodiesel–diesel blends. Fuel, 88, 738–743.

    Google Scholar 

  21. Cecrle, E., Depcik, C., Duncan, A., Guo, J., Mangus, M., Peltier, E., et al. (2012). Investigation of the effects of biodiesel feedstock on the performance and emissions of a single-cylinder diesel engine. Energy & Fuels, 26, 2331–2341.

    Article  Google Scholar 

  22. Chhetri, A., & Watts, K. (2012). Densities of canola, jatropha and soapnut biodiesel at elevated temperatures and pressures. Fuel, 99, 210–216.

    Article  Google Scholar 

  23. Chhetri, A., & Watts, K. (2012). Viscosities of canola, jatropha and soapnut biodiesel at elevated temperatures and pressures. Fuel, 102, 789–794.

    Article  Google Scholar 

  24. Chhetri, A. B., Tango, M. S., Budge, S. M., Watts, K. C., & Islam, M. R. (2008). Non-edible plant oils as new sources for biodiesel production. International Journal of Molecular Sciences, 9, 169–180.

    Article  Google Scholar 

  25. Chhetri, A. B., Watts, K. C., & Islam, M. R. (2008). Waste cooking oil as an alternate feedstock for biodiesel production. Energies, 1, 3–18.

    Article  Google Scholar 

  26. Choudhury, S., & Bose, P. (2008). Jatropha derived Biodiesel–Its suitability as CI engine fuel. SAE Technical Paper.

    Google Scholar 

  27. Chung, K.-H. (2010). Transesterification of Camellia japonica and Vernicia fordii seed oils on alkali catalysts for biodiesel production. Journal of Industrial and Engineering Chemistry, 16, 506–509.

    Article  Google Scholar 

  28. Crabbe, E., Nolasco-Hipolito, C., Kobayashi, G., Sonomoto, K., & Ishizaki, A. (2001). Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochemistry, 37, 65–71.

    Article  Google Scholar 

  29. Cursaru, D., Neagu, M., & Bogatu, L. (2013). Investigations on the oxidation stability of biodiesel synthesized from different vegetable oils. Revista de Chimie, 64, 438–441.

    Google Scholar 

  30. Dantas, M., Albuquerque, A., Barros, A., Rodrigues Filho, M., Antoniosi Filho, N., Sinfrônio, F., et al. (2011). Evaluation of the oxidative stability of corn biodiesel. Fuel, 90, 773–778.

    Google Scholar 

  31. Davis, J., Geller, D., Faircloth, W., & Sanders, T. (2009). Comparisons of biodiesel produced from unrefined oils of different peanut cultivars. Journal of the American Oil Chemists’ Society, 86, 353–361.

    Article  Google Scholar 

  32. Deligiannis, A., Papazafeiropoulou, A., Anastopoulos, G., & Zannikos, F. (2011) Waste coffee grounds as an energy feedstock. In Proceedings of the 3rd International CEMEPE & SECOTOX Conference Skiathos, ISBN, (pp. 978–960).

    Google Scholar 

  33. Demirbas, A. (2009). Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management, 50, 923–927.

    Article  Google Scholar 

  34. Demirbas, A. (2009). Potential resources of non-edible oils for biodiesel. Energy Sources, Part B: Economics, Planning and Policy, 4, 310–314.

    Article  Google Scholar 

  35. Demirbaş, A. (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion and Management, 43, 2349–2356.

    Article  Google Scholar 

  36. Dias, J. M., Alvim-Ferraz, M., & Almeida, M. F. (2009). Production of biodiesel from acid waste lard. Bioresource Technology, 100, 6355–6361.

    Article  Google Scholar 

  37. Do, L. D., Singh, V., Chen, L., Kibbey, T. C., Gollahalli, S. R., & Sabatini, D. A. (2011). Algae, Canola, or Palm oils—Diesel microemulsion fuels: Phase behaviors, viscosity, and combustion properties. International Journal of Green Energy, 8, 748–767.

    Article  Google Scholar 

  38. Dorado, M., Ballesteros, E., Arnal, J., Gomez, J., & Lopez Gimenez, F. (2003). Testing waste olive oil methyl ester as a fuel in a diesel engine. Energy & Fuels, 17, 1560–1565.

    Article  Google Scholar 

  39. Dos Santos, I., De Carvalho, S., Solleti, J., Ferreira de La Salles, W., Teixeira da Silva de La Salles, K., & Meneghetti, S. (2008). Studies of Terminalia catappa L. oil: Characterization and biodiesel production. Bioresource Technology, 99, 6545–6549.

    Google Scholar 

  40. Duncan, A. M., Ahosseini, A., McHenry, R., Depcik, C. D., Stagg-Williams, S. M., & Scurto, A. M. (2010). High-pressure viscosity of biodiesel from soybean, canola, and coconut oils. Energy & Fuels, 24, 5708–5716.

    Article  Google Scholar 

  41. el Diwani, G., & el Rafie, S. (2008). Modification of thermal and oxidative properties of biodiesel produced from vegetable oils. International Journal of Environmental Science and Technology, 5, 391–400.

    Article  Google Scholar 

  42. Encinar, J. M., Gonzalez, J. F., & Rodríguez-Reinares, A. (2005). Biodiesel from used frying oil. Variables affecting the yields and characteristics of the biodiesel. Industrial and Engineering Chemistry Research, 44, 5491–5499.

    Article  Google Scholar 

  43. Feitosa, F. X., Rodrigues, M. D. L., Veloso, C. B., Cavalcante Jr, C. L., Albuquerque, M. C., & De Sant’ana, H. B. (2010). Viscosities and densities of binary mixtures of coconut colza and coconut + soybean biodiesel at various temperatures. Journal of Chemical & Engineering Data, 55, 3909–3914.

    Google Scholar 

  44. Fröhlich, A., & Rice, B. (2005). Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Industrial Crops and Products, 21, 25–31.

    Article  Google Scholar 

  45. Ghadge, S. V., & Raheman, H. (2005). Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass and Bioenergy, 28, 601–605.

    Article  Google Scholar 

  46. Giwa, S., & Ogunbona, C. (2014). Sweet almond (Prunus amygdalus” dulcis”) seeds as a potential feedstock for Nigerian Biodiesel Automotive Project. Revista Ambiente & Água, 9, 37–45.

    Google Scholar 

  47. Godiganur, S., Suryanarayana Murthy, C., & Reddy, R. P. (2009). 6BTA 5.9 G2-1 Cummins engine performance and emission tests using methyl ester mahua (Madhuca indica) oil/diesel blends. Renewable Energy, 34, 2172-2177.

    Google Scholar 

  48. Guzatto, R., de Martini, T. L., & Samios, D. (2011). The use of a modified TDSP for biodiesel production from soybean, linseed and waste cooking oil. Fuel Processing Technology, 92, 2083–2088.

    Article  Google Scholar 

  49. Haagenson, D. M., Brudvik, R. L., Lin, H., & Wiesenborn, D. P. (2010). Implementing an in situ alkaline transesterification method for canola biodiesel quality screening. Journal of the American Oil Chemists’ Society, 87, 1351–1358.

    Article  Google Scholar 

  50. Haseeb, A., Fazal, M., Jahirul, M., & Masjuki, H. (2011). Compatibility of automotive materials in biodiesel: A review. Fuel, 90, 922–931.

    Article  Google Scholar 

  51. Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16, 143–169.

    Article  Google Scholar 

  52. Hu, J., Du, Z., Li, C., & Min, E. (2005). Study on the lubrication properties of biodiesel as fuel lubricity enhancers. Fuel, 84, 1601–1606.

    Google Scholar 

  53. Ikwuagwu, O., Ononogbu, I., & Njoku, O. (2000). Production of biodiesel using rubber [Hevea brasiliensis (Kunth. Muell.)] seed oil. Industrial Crops and Products, 12, 57–62.

    Article  Google Scholar 

  54. Islam, M. A., Brown, R. J., Brooks, P. R., Jahirul, M. I., Bockhorn, H., & Heimann, K. (2015). Investigation of the effects of the fatty acid profile on fuel properties using a multi-criteria decision analysis. Energy Conversion and Management, 98, 340–347.

    Article  Google Scholar 

  55. Jahirul, M., Brown, R., Senadeera, W., O’hara, I., & Ristovski, Z. (2013a). The use of artificial neural networks for identifying sustainable biodiesel feedstocks. Energies, 6, 3764.

    Google Scholar 

  56. Jahirul, M. I., Brown, J. R., Senadeera, W., Ashwath, N., Laing, C., Leski-Taylor, J., et al. (2013). Optimisation of bio-oil extraction process from beauty leaf (calophyllum inophyllum) oil seed as a second generation biodiesel source. Procedia Engineering, 56, 619–624.

    Article  Google Scholar 

  57. Jahirul, M. I., Brown, R. J., Senadeera, W., O’Hara, I. M., & Ristovski, Z. D. (2013). The use of artificial neural networks for identifying sustainable biodiesel feedstocks. Energies, 6, 3764–3806.

    Article  Google Scholar 

  58. Jahirul, M. I., Koh, W., Brown, R. J., Senadeera, W., O’Hara, I., & Moghaddam, L. (2014). Biodiesel production from non-edible beauty leaf (Calophyllum inophyllum) oil: Process optimization using response surface methodology (RSM). Energies, 7, 5317–5331.

    Article  Google Scholar 

  59. Jahirul, M. I., Masjuki, H., Saidur, R., Kalam, M., Jayed, M., & Wazed, M. (2010). Comparative engine performance and emission analysis of CNG and gasoline in a retrofitted car engine. Applied Thermal Engineering, 30, 2219–2226.

    Article  Google Scholar 

  60. Jain, S., & Sharma, M. (2012). Application of thermogravimetric analysis for thermal stability of Jatropha Curcas biodiesel. Fuel, 93, 252–257.

    Article  Google Scholar 

  61. Jayed, M., Masjuki, H., Saidur, R., Kalam, M., & Jahirul, M. I. (2009). Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia. Renewable and Sustainable Energy Reviews, 13, 2452–2462.

    Article  Google Scholar 

  62. Jham, G. N., Moser, B. R., Shah, S. N., Holser, R. A., Dhingra, O. D., Vaughn, S. F., et al. (2009). Wild Brazilian mustard (Brassica juncea L.) seed oil methyl esters as biodiesel fuel. Journal of the American Oil Chemists’ Society, 86, 917–926.

    Article  Google Scholar 

  63. Kalam, M., & Masjuki, H. (2002). Biodiesel from palmoil—an analysis of its properties and potential. Biomass and Bioenergy, 23, 471–479.

    Article  Google Scholar 

  64. Kalam, M. A., & Masjuki, H. H. (2002). Biodiesel from palmoil—An analysis of its properties and potential. Biomass and Bioenergy, 23, 471–479.

    Article  Google Scholar 

  65. Kalligeros, S., Zannikos, F., Stournas, S., Lois, E., Anastopoulos, G., Teas, C., et al. (2003). An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine. Biomass and Bioenergy, 24, 141–149.

    Article  Google Scholar 

  66. Kapilan, N., & Reddy, R. (2008). Evaluation of methyl esters of mahua oil (Madhuca indica) as diesel fuel. Journal of the American Oil Chemists’ Society, 85, 185–188.

    Article  Google Scholar 

  67. Karavalakis, G., Stournas, S., & Bakeas, E. (2009). Light vehicle regulated and unregulated emissions from different biodiesels. Science of the Total Environment, 407, 3338–3346.

    Article  Google Scholar 

  68. Kaya, C., Hamamci, C., Baysal, A., Akba, O., Erdogan, S., & Saydut, A. (2009). Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production. Renewable Energy, 34, 1257–1260.

    Article  Google Scholar 

  69. Kinast, J. (2003). Production of Biodiesels from Multiple Feedstocks and Properties of Biodiesels and Biodiesel/Diesel Blends. Final Report, Report 1 in a Series of 6. National Renewable Energy Lab., Golden, CO, US.

    Google Scholar 

  70. Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86, 1059–1070.

    Article  Google Scholar 

  71. Knothe, G. (2008). “Designer” biodiesel: Optimizing fatty ester composition to improve fuel properties. Energy & Fuels, 22, 1358–1364.

    Article  Google Scholar 

  72. Knothe, G., & Steidley, K. R. (2005). Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel, 84, 1059–1065.

    Article  Google Scholar 

  73. Koçak, M. S., Ileri, E., & Utlu, Z. (2007). Experimental study of emission parameters of biodiesel fuels obtained from canola, hazelnut, and waste cooking oils. Energy & Fuels, 21, 3622–3626.

    Article  Google Scholar 

  74. Kousoulidou, M., Fontaras, G., Ntziachristos, L., & Samaras, Z. (2010). Biodiesel blend effects on common-rail diesel combustion and emissions. Fuel, 89, 3442–3449.

    Article  Google Scholar 

  75. Kumar, G., Kumar, D., Singh, S., Kothari, S., Bhatt, S., & Singh, C. P. (2010). Continuous low cost transesterification process for the production of coconut biodiesel. Energies, 3, 43–56.

    Article  Google Scholar 

  76. Kumar Tiwari, A., Kumar, A., & Raheman, H. (2007). Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass and Bioenergy, 31, 569–575.

    Google Scholar 

  77. Lapuerta, M., Herreros, J. M., Lyons, L. L., García-Contreras, R., & Briceño, Y. (2008). Effect of the alcohol type used in the production of waste cooking oil biodiesel on diesel performance and emissions. Fuel, 87, 3161–3169.

    Article  Google Scholar 

  78. Lebedevas, S., & Vaicekauskas, A. (2006). Research into the application of biodiesel in the transport sector of Lithuania. Transport, 21, 80–87.

    Google Scholar 

  79. Lebedevas, S., Vaicekauskas, A., Lebedeva, G., Makareviciene, V., Janulis, P., & Kazancev, K. (2006). Use of waste fats of animal and vegetable origin for the production of biodiesel fuel: quality, motor properties, and emissions of harmful components. Energy & Fuels, 20, 2274–2280.

    Article  Google Scholar 

  80. Lee, K.-T., Foglia, T. A., & Chang, K.-S. (2002). Production of alkyl ester as biodiesel from fractionated lard and restaurant grease. Journal of the American Oil Chemists’ Society, 79, 191–195.

    Article  Google Scholar 

  81. Lin, B.-F., Huang, J.-H., & Huang, D.-Y. (2009). Experimental study of the effects of vegetable oil methyl ester on DI diesel engine performance characteristics and pollutant emissions. Fuel, 88, 1779–1785.

    Article  Google Scholar 

  82. Lin, C.-Y., & Li, R.-J. (2009). Engine performance and emission characteristics of marine fish-oil biodiesel produced from the discarded parts of marine fish. Fuel Processing Technology, 90, 883–888.

    Article  Google Scholar 

  83. Lin, L., Cunshan, Z., Vittayapadung, S., Xiangqian, S., & Mingdong, D. (2011). Opportunities and challenges for biodiesel fuel. Applied Energy, 88, 1020–1031.

    Article  Google Scholar 

  84. Loh, S.-K., Chew, S.-M., & Choo, Y.-M. (2006). Oxidative stability and storage behavior of fatty acid methyl esters derived from used palm oil. Journal of the American Oil Chemists’ Society, 83, 947–952.

    Article  Google Scholar 

  85. Luque, R., Herrero-Davila, L., Campelo, J. M., Clark, J. H., Hidalgo, J. M., Luna, D., et al. (2008). Biofuels: A technological perspective. Energy & Environmental Science, 1, 542–564.

    Article  Google Scholar 

  86. Miller, R., Schmidt, G., & Shindell, D. (2006). Forced annular variations in the 20th century intergovernmental panel on climate change fourth assessment report models. Journal of Geophysical Research: Atmospheres, 111.

    Google Scholar 

  87. Moraes, M. S. A., Krause, L. C., da Cunha, M. E., Faccini, C. S., de Menezes, E. W., Veses, R. C., et al. (2008). Tallow biodiesel: Properties evaluation and consumption tests in a diesel engine. Energy & Fuels, 22, 1949–1954.

    Article  Google Scholar 

  88. Moser, B. R. (2008). Influence of blending canola, palm, soybean, and sunflower oil methyl esters on fuel properties of biodiesel. Energy & Fuels, 22, 4301–4306.

    Article  Google Scholar 

  89. Moser, B. R. (2011). Biodiesel production, properties, and feedstocks. Biofuels. Springer.

    Google Scholar 

  90. Moser, B. R. (2012). Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel. Fuel, 92, 231–238.

    Article  Google Scholar 

  91. Moser, B. R., & Vaughn, S. F. (2010). Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresource Technology, 101, 646–653.

    Article  Google Scholar 

  92. Nakpong, P., & Wootthikanokkhan, S. (2010). High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand. Renewable Energy, 35, 1682–1687.

    Article  Google Scholar 

  93. Ng, H. K., & Gan, S. (2010). Combustion performance and exhaust emissions from the non-pressurised combustion of palm oil biodiesel blends. Applied Thermal Engineering, 30, 2476–2484.

    Article  Google Scholar 

  94. Nogueira Jr, C. A., Feitosa, F. X., Fernandes, F. A., Santiago, R. L. S., & De Sant’ana, H. B. (2010). Densities and viscosities of binary mixtures of babassu biodiesel + cotton seed or soybean biodiesel at different temperatures. Journal of Chemical & Engineering Data, 55, 5305–5310.

    Google Scholar 

  95. Öner, C., & Altun, Ş. (2009). Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine. Applied Energy, 86, 2114–2120.

    Article  Google Scholar 

  96. Özcanlı, M., Keskin, A., & Aydın, K. (2011). Biodiesel production from terebinth (Pistacia terebinthus) oil and its usage in diesel engine. International Journal of Green Energy, 8, 518–528.

    Google Scholar 

  97. Park, J.-Y., Kim, D.-K., Lee, J.-P., Park, S.-C., Kim, Y.-J., & Lee, J.-S. (2008). Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresource Technology, 99, 1196–1203.

    Article  Google Scholar 

  98. Pereira, R. G., Oliveira, C. D., Oliveira, J. L., Oliveira, P. C. P., Fellows, C. E., & Piamba, O. E. (2007). Exhaust emissions and electric energy generation in a stationary engine using blends of diesel and soybean biodiesel. Renewable Energy, 32, 2453–2460.

    Article  Google Scholar 

  99. Pérez, Á., Casas, A., Fernández, C. M., Ramos, M. J., & Rodríguez, L. (2010). Winterization of peanut biodiesel to improve the cold flow properties. Bioresource Technology, 101, 7375–7381.

    Article  Google Scholar 

  100. Phan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87, 3490–3496.

    Article  Google Scholar 

  101. Puhan, S., Jegan, R., Balasubbramanian, K., & Nagarajan, G. (2009). Effect of injection pressure on performance, emission and combustion characteristics of high linolenic linseed oil methyl ester in a DI diesel engine. Renewable Energy, 34, 1227–1233.

    Article  Google Scholar 

  102. Qi, D., Geng, L., Chen, H., Bian, Y., Liu, J., & Ren, X. (2009). Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil. Renewable Energy, 34, 2706–2713.

    Article  Google Scholar 

  103. Radha, K., & Manikandan, G. (2011). Novel production of biofuels from neem oil. In World Renewable Energy Congress–Sweden, Bioenergy Technology, Linkoping, Sweden (pp. 8–13).

    Google Scholar 

  104. Ragit, S., Mohapatra, S., Kundu, K., & Gill, P. (2011). Optimization of neem methyl ester from transesterification process and fuel characterization as a diesel substitute. Biomass and Bioenergy, 35, 1138–1144.

    Article  Google Scholar 

  105. Rahman, M., Pourkhesalian, A., Jahirul, M., Stevanovic, S., Pham, P., Wang, H., et al. (2014). Particle emissions from biodiesels with different physical properties and chemical composition. Fuel, 134, 201–208.

    Article  Google Scholar 

  106. Rajendra, M., Jena, P. C., & Raheman, H. (2009). Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA. Fuel, 88, 868–875.

    Article  Google Scholar 

  107. Ramadhas, A. S., Jayaraj, S., & Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel, 84, 335–340.

    Google Scholar 

  108. Ramalho, E., Carvalho Filho, J., Albuquerque, A., De Oliveira, S., Cavalcanti, E., Stragevitch, L., et al. (2012). Low temperature behavior of poultry fat biodiesel: diesel blends. Fuel, 93, 601–605.

    Google Scholar 

  109. Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L., & Pérez, Á. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100, 261–268.

    Article  Google Scholar 

  110. Rashid, U., & Anwar, F. (2008). Production of biodiesel through base-catalyzed transesterification of safflower oil using an optimized protocol. Energy & Fuels, 22, 1306–1312.

    Article  Google Scholar 

  111. Rashid, U., Anwar, F., & Knothe, G. (2009). Evaluation of biodiesel obtained from cottonseed oil. Fuel Processing Technology, 90, 1157–1163.

    Article  Google Scholar 

  112. Rashid, U., Anwar, F., Moser, B. R., & Ashraf, S. (2008). Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass and Bioenergy, 32, 1202–1205.

    Article  Google Scholar 

  113. Reyes, J., & Sepulveda, M. (2006). PM-10 emissions and power of a diesel engine fueled with crude and refined biodiesel from salmon oil. Fuel, 85, 1714–1719.

    Article  Google Scholar 

  114. Rodrigues Jr, J. D. A., Cardoso, F. D. P., Lachter, E. R., Estevão, L. R., Lima, E., & Nascimento, R. S. (2006). Correlating chemical structure and physical properties of vegetable oil esters. Journal of the American Oil Chemists’ Society, 83, 353–357.

    Google Scholar 

  115. Royon, D., Daz, M., Ellenrieder, G., & Locatelli, S. (2007). Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technology, 98, 648–653.

    Article  Google Scholar 

  116. Sahoo, P., Das, L., Babu, M., & Naik, S. (2007). Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine. Fuel, 86, 448–454.

    Article  Google Scholar 

  117. Samios, D., Pedrotti, F., Nicolau, A., Reiznautt, Q., Martini, D., & Dalcin, F. (2009). A transesterification double step process—TDSP for biodiesel preparation from fatty acids triglycerides. Fuel Processing Technology, 90, 599–605.

    Article  Google Scholar 

  118. Sanford, S. D., White, J. M., Shah, P. S., Wee, C., Valverde, M. A., & Meier, G. R. (2009). Feedstock and biodiesel characteristics report. Renewable Energy Group, 416.

    Google Scholar 

  119. Sardar, N., Ahmad, M., Khan, M. A., Ali, S., Zafar, M., Khalid, N., et al. (2011). Prospects and potential of non edible neem oil biodiesel based on physicochemical characterization. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33, 1422–1430.

    Article  Google Scholar 

  120. Sarin, R., Sharma, M., Sinharay, S., & Malhotra, R. (2007). Jatropha–palm biodiesel blends: an optimum mix for Asia. Fuel, 86, 1365–1371.

    Article  Google Scholar 

  121. Schwab, A., Bagby, M., & Freedman, B. (1987). Preparation and properties of diesel fuels from vegetable oils. Fuel, 66, 1372–1378.

    Article  Google Scholar 

  122. Senatore, A., Cardone, M., Rocco, V., & Prati, M. V. (2000). A comparative analysis of combustion process in DI diesel engine fueled with biodiesel and diesel fuel. SAE Technical Paper.

    Google Scholar 

  123. Serdari, A., Fragioudakis, K., Teas, C., Sakellaropoulos, F., Zannikos, F., Stournas, S., et al. (1998). Adding biodiesel corn oil and sunflower oil to diesel fuel: the impact on the performance of conventional road vehicles. Journal of the Institute of Energy, 71, 126–136.

    Google Scholar 

  124. Shah, S. N., Iha, O. K., Alves, F. C., Sharma, B. K., Erhan, S. Z., & Suarez, P. A. (2013). Potential application of turnip oil (raphanus sativus l.) for biodiesel production: Physical-chemical properties of neat oil, biofuels and their blends with ultra-low sulphur diesel (ULSD). BioEnergy Research, 6, 841–850.

    Article  Google Scholar 

  125. Singh, R., & Padhi, S. K. (2009). Characterization of Jatropha oil for the preparation of biodiesel. Natural Product Radiance, 8, 127–132.

    Google Scholar 

  126. Singh, S., & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14, 200–216.

    Article  Google Scholar 

  127. Sinha, S., Agarwal, A. K., & Garg, S. (2008). Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization. Energy Conversion and Management, 49, 1248–1257.

    Article  Google Scholar 

  128. Sivalakshmi, S., & Balusamy, T. (2012). Influence of ethanol addition on a diesel engine fuelled with neem oil methyl ester. International Journal of Green Energy, 9, 218–228.

    Article  Google Scholar 

  129. Soriano Jr, N. U., & Narani, A. (2012). Evaluation of biodiesel derived from Camelina sativa oil. Journal of the American Oil Chemists’ Society, 89, 917–923.

    Google Scholar 

  130. Sun, Y.-Q., Chen, B.-S., Zeng, G., Wang, J., Fang, J.-H., Xiong, W., et al. (2008). Research of low temperature properties of peanut oil and peanut biodiesel. Internal Combustion Engines, 3, 018.

    Google Scholar 

  131. Tan, R. R., Culaba, A. B., & Purvis, M. R. (2004). Carbon balance implications of coconut biodiesel utilization in the Philippine automotive transport sector. Biomass and Bioenergy, 26, 579–585.

    Article  Google Scholar 

  132. Tang, H., Salley, S. O., & Simon Ng, K. (2008). Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends. Fuel, 87, 3006–3017.

    Article  Google Scholar 

  133. Todaka, M., Kowhakul, W., Masamoto, H., Shigematsu, M., & Onwona-Agyeman, S. (2013). Thermal decomposition of biodiesel fuels produced from rapeseed, jatropha, and coffee oils with different alcohols. Journal of Thermal Analysis and Calorimetry, 113, 1355–1361.

    Article  Google Scholar 

  134. Vedaraman, N., Puhan, S., Nagarajan, G., & Velappan, K. (2011). Preparation of palm oil biodiesel and effect of various additives on NOx emission reduction in B20: An experimental study. International Journal of Green Energy, 8, 383–397.

    Article  Google Scholar 

  135. Wang, L.-B., Yu, H.-Y., He, X.-H., & Liu, R.-Y. (2012). Influence of fatty acid composition of woody biodiesel plants on the fuel properties. Journal of Fuel Chemistry and Technology, 40, 397–404.

    Article  Google Scholar 

  136. Wu, F., Wang, J., Chen, W., & Shuai, S. (2008). Effects of different biodiesels and their blends with oxygenated additives on emissions from a diesel engine. SAE Technical Paper, 008-01-1812.

    Google Scholar 

  137. Wu, X., & Leung, D. Y. (2011). Optimization of biodiesel production from camelina oil using orthogonal experiment. Applied Energy, 88, 3615–3624.

    Article  Google Scholar 

  138. Wyatt, V. T., Hess, M. A., Dunn, R. O., Foglia, T. A., Haas, M. J., & Marmer, W. N. (2005). Fuel properties and nitrogen oxide emission levels of biodiesel produced from animal fats. Journal of the American Oil Chemists’ Society, 82, 585–591.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks for the provision of the QUTPRA scholarship, and to QUT for providing funds for conducting this research. The authors would also like to thank the Biofuel Engine Research Facility (BERF) for providing facilities to complete this study. The authors would also like to thank Australian Research Council’s Linkage Projects funding scheme (project number LP110200158) for providing support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M I Jahirul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Jahirul, M.I., Brown, R.J., Senadeera, W. (2018). Correlation Between Physicochemical Properties and Quality of Biodiesel. In: Khan, M., Chowdhury, A., Hassan, N. (eds) Application of Thermo-fluid Processes in Energy Systems. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0697-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0697-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0695-1

  • Online ISBN: 978-981-10-0697-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics