Skip to main content

Improved Media Compositions for the Differentiation of Embryonic Stem Cells into Osteoblasts and Chondrocytes

  • Protocol
  • First Online:
Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 690))

Abstract

Differentiation procedures leading to osteogenic and chondrogenic differentiation of embryonic stem cells (ESCs) have been established and well upgraded over the past decade. Novel cell-culture conditions, signaling inducers, and chemical modifications of cellular environment have been found and optimized for use as steering or supporting modules in ESC differentiation.

While most of the novel studies of osteoblasts or chondrocytes differentiated from ESCs deal with their regenerative potential, the “childhood diseases” of basic differentiation have not yet been quite solved. Purification procedures are still facing a lack of exclusive markers for osteogenic progenitors and a collateral development of other cell types at the end points of differentiation that possibly lead to teratomas.

This chapter discusses the role of novel markers and inducers in osteogenic and chondrogenic differentiation, their effect on signaling pathways, particularly on that of Wnt/beta-catenin, and the time-specific manner of their action. We present an improved osteogenic differentiation protocol based on the hanging drop method and a time-optimized use of 1α,25-(OH)2 vitamin D3, all-trans retinoic acid, and bone morphogenetic protein 2 (BMP-2) with an end point efficiency increased up to 90% and a protocol for chondrogenic differentiation, which employs BMP-2 and transforming growth factor β1 as chondrogenic inducers, with 60% chondrogenic end point efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duplomb, L., Dagouassat, M., Jourdon, P., and Heymann, D. (2007) Concise review: embryonic stem cells: a new tool to study osteoblast and osteoclast differentiation. Stem Cells. 25(3), 544–552.

    Article  PubMed  CAS  Google Scholar 

  2. Buttery, L.D.K., Bourne, S., Xynos, J.D., Wood, H., Hughes, F.J., Hughes, S.P.F., et al. (2001) Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng. 7, 89–99.

    Article  PubMed  CAS  Google Scholar 

  3. zur Nieden, N. I., Kempka, G., and Ahr, H. J. (2003) In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation. 71, 18–27.

    Article  PubMed  CAS  Google Scholar 

  4. Phillips, B.W., Belmonte, N., Vernochet, C., Ailhaud, G., and Dani, C. (2001) Compactin enhances osteogenesis in murine embryonic stem cells. Biochem. Biophys. Res. Commun. 284(2), 478–484.

    Article  PubMed  CAS  Google Scholar 

  5. Sottile, V., Thomson, A., and McWhir, J. (2003) In vitro osteogenic differentiation of human ES cells. Cloning Stem Cells. 5, 149–155.

    Article  PubMed  CAS  Google Scholar 

  6. Tremoleda, J.L., Forsyth, N.R., Khan, N.S., Wojtacha, D., Christodoulou, I., Tye, B.J., et al. (2008) Bone tissue formation from human embryonic stem cells in vivo. Cloning Stem Cells. 10(1), 119–132.

    Article  PubMed  CAS  Google Scholar 

  7. Arpornmaeklong, P., Brown, S.E., Wang, Z., and Krebsbach, P.H. (2009) Phenotypic characterization, osteoblastic differentiation, and bone regeneration capacity of human embryonic stem cell-derived mesenchymal stem cells. Stem Cells Dev. 18(7), 955–968.

    Article  PubMed  CAS  Google Scholar 

  8. Duester, G. (2008) Retinoic acid synthesis and signaling during early organogenesis. Cell. 134(6), 921–931.

    Article  PubMed  CAS  Google Scholar 

  9. zur Nieden, N.I., Price, F.D., Davis, L.A., Everitt, R.E., and Rancourt, D.E. (2007) Gene profiling on mixed embryonic stem cell populations reveals a biphasic role for beta-catenin in osteogenic differentiation. Mol. Endocrinol. 21(3), 674–685.

    Article  PubMed  CAS  Google Scholar 

  10. Doss, M.X., Chen, S., Winkler, J., Hippler-Altenburg, R., Odenthal, M., Wickenhauser, C., et al. (2007) Transcriptomic and phenotypic analysis of murine embryonic stem cell derived BMP2+ lineage cells: an insight into mesodermal patterning. Genome Biol. 8(9), R184.

    Article  PubMed  Google Scholar 

  11. Davis, L.A. and zur Nieden, N.I. (2008) Mesodermal fate decisions of a stem cell: the Wnt switch. Cell. Mol. Life Sci. 65(17), 2658–2674.

    Article  PubMed  CAS  Google Scholar 

  12. Bourne, S., Polak, J.M., Hughes, S.P., and Buttery, L.D. (2004) Osteogenic differentiation of mouse embryonic stem cells: differential gene expression analysis by cDNA microarray and purification of osteoblasts by cadherin-11 magnetically activated cell sorting. Tissue Eng. 10(5–6), 796–806.

    Article  PubMed  CAS  Google Scholar 

  13. Okazaki, M., Takeshita, S., Kawai, S., Kikuno, R., Tsujimura, A., Kudo, A., et al. (1994) Molecular cloning and characterization of OB-cadherin, a new member of cadherin family expressed in osteoblasts. J. Biol. Chem. 269(16), 12092–12098.

    PubMed  CAS  Google Scholar 

  14. Sui, Y., Clarke, T., and Khillan, J.S. (2003) Limb bud progenitor cells induce differentiation of pluripotent embryonic stem cells into chondrogenic lineage. Differentiation. 71, 578–585.

    Article  PubMed  CAS  Google Scholar 

  15. Vats, A., Bielby, R.C., Tolley, N., Dickinson, S.C., Boccaccini, A.R., Hollander, A.P., et al. (2006) Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Eng. 12(6), 1687–1697.

    Article  PubMed  CAS  Google Scholar 

  16. Worster, A.A., Brower-Toland, B.D., Fortier, L.A., Bent, S.J., Williams, J., and Nixon, A.J. (2001) Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a threedimensional matrix. J. Orthop. Res. 19, 738–749.

    Article  PubMed  CAS  Google Scholar 

  17. Estes, B.T., Wu, A.W., and Guilak, F. (2006) Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum. 54, 1222–1232.

    Article  PubMed  CAS  Google Scholar 

  18. Wang, W.-G., Loua, S.-Q., Ju, X.-D., Xia, K., and Xia, J.-H. (2003) In vitro chondrogenesis of human bone marrow-derived mesenchymal progenitor cells in monolayer culture: activation by transfection with TGF-β2. Tissue Cell. 35, 69–77.

    Article  PubMed  Google Scholar 

  19. Schonherr, E. and Hausser, H.J. (2000) Extracellular matrix and cytokines: a functional unit. Dev. Immunol. 7, 89–101.

    Article  PubMed  CAS  Google Scholar 

  20. Majumdar, M.K., Wang, E., and Morris, E.A. (2001) BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J. Cell. Physiol. 189, 275–284.

    Article  PubMed  CAS  Google Scholar 

  21. Hatakeyama, Y., Tuan, R.S., and Shum, L. (2004) Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis. J. Cell. Biochem. 91, 1204–1217.

    Article  PubMed  CAS  Google Scholar 

  22. zur Nieden, N.I., Kempka, G., Rancourt, D.E., and Ahr, H.J. (2005) Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev. Biol. 5, 1.

    Article  PubMed  Google Scholar 

  23. Ballock, R.T. and Reddi, A.H. (1994) Thyroxine is the serum factor that regulates morphogenesis of columnar cartilage from isolated chondrocytes in chemically defined medium. J. Cell. Biol. 126(5), 1311–1318.

    Article  PubMed  CAS  Google Scholar 

  24. Johnstone, B., Hering, T.M., Caplan, A.I., Goldberg, V.M., and Yoo, J.U. (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell. Res. 238, 265–272.

    Article  PubMed  CAS  Google Scholar 

  25. Mackay, A.M., Beck, S.C., Murphy, J.M., Barry, F.P., Chichester, C.O., and Pittenger, M.F. (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4(4), 415–428.

    Article  PubMed  CAS  Google Scholar 

  26. Denker, A.E., Nicoll, S.B., and Tuan, R.S. (1995) Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-beta 1. Differentiation. 59, 25–34.

    Article  PubMed  CAS  Google Scholar 

  27. Tanaka, H., Murphy, C.L., Murphy, C., Kimura, M., Kawai, S., and Polak, J.M. (2004) Chondrogenic differentiation of murine embryonic stem cells: effects of culture conditions and dexamethasone. J. Cell. Biochem. 93(3), 454–462.

    Article  PubMed  CAS  Google Scholar 

  28. Toh, W.S., Yang, Z., Liu, H., Heng, B.C., Lee, E.H., and Cao, T. (2007) Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells. 25(4), 950–960.

    Article  PubMed  CAS  Google Scholar 

  29. Hwang, N.S., Kim, M.S., Sampattavanich, S., Baek, J.H., Zhang, Z., and Elisseeff, J. (2006) Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem Cells. 24(2), 284–291.

    Article  PubMed  CAS  Google Scholar 

  30. Hwang, N.S., Varghese, S., Zhang, Z., and Elisseeff, J. (2006) Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Eng. 12(9), 2695–2706.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

NzN acknowledges the support of the German Ministry for Science, Education and Research (grant 0312314). NzN was funded through a postdoctoral fellowship from the Alberta Heritage Foundation for Medical Research while developing the improved osteogenic protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole I. zur Nieden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kuske, B., Savkovic, V., zur Nieden, N.I. (2011). Improved Media Compositions for the Differentiation of Embryonic Stem Cells into Osteoblasts and Chondrocytes. In: Nieden, N. (eds) Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases. Methods in Molecular Biology, vol 690. Humana Press. https://doi.org/10.1007/978-1-60761-962-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-962-8_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-961-1

  • Online ISBN: 978-1-60761-962-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics