Skip to main content
Log in

Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Medicinal plants have been used world-wide for thousands of years and are widely recognized as having high healing but minor toxic side effects. The scarcity and increasing demand for medicinal plants and their products have promoted the development of artificial cultivation of medicinal plants. Currently, one of the prominent issues in medicinal cultivation systems is the unstable quality of the products. Arbuscular mycorrhiza (AM) affects secondary metabolism and the production of active ingredients of medicinal plants and thus influence the quality of herbal medicines. In this review, we have assembled, analyzed, and summarized the effects of AM symbioses on secondary metabolites of medicinal plants. We conclude that symbiosis of AM is conducive to favorable characteristics of medicinal plants, by improving the production and accumulation of important active ingredients of medicinal plants such as terpenes, phenols, and alkaloids, optimizing the composition of different active ingredients in medicinal plants and ultimately improving the quality of herbal materials. We are convinced that the AM symbiosis will benefit the cultivation of medicinal plants and improve the total yield and quality of herbal materials. Through this review, we hope to draw attention to the status and prospects of, and arouse more interest in, the research field of medicinal plants and mycorrhiza.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Zeyad R, Khan AG, Khoo C (1999) Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorrhiza 9:111–117

    CAS  Google Scholar 

  • Akiyama K, Hayashi H (2002) Arbuscular mycorrhizal fungus-promoted accumulation of two new triterpenoids in cucumber roots. Biosci Biotechnol Biochem 66(4):762–769

    Article  PubMed  CAS  Google Scholar 

  • Allen MF, Moore TS, Christensen M (1980) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. I. Cytokinin increases in the host plant. Can J Bot 58:371–374

    Article  CAS  Google Scholar 

  • Allen MF, Moore TS, Christensen M (1982) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60:468–471

    Article  CAS  Google Scholar 

  • Araim G, Saleem A, Arnason JT, Charest AC (2009) Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. J Agric Food Chem 57:2255–2258

    Article  PubMed  CAS  Google Scholar 

  • Arpana J, Bagyaraj DJ, Prakasa Rao EVS, Parameswaran TN, Abdul Rahiman BA (2008) Symbiotic response of patchouli [Pogostemon cablin (Blanco) Benth.] to different arbuscular mycorrhizal fungi. Adv Environ Biol 2(1):20–24

    CAS  Google Scholar 

  • Asrar AWA, Elhindi KM (2010) Elhindi. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi J of Biol Sci 18(1):93–98

    Article  Google Scholar 

  • Awasthi A, Bharti N, Nair N, Singh R, Shukla AK, Gupta MM, Darokar MP, Kalra A (2011) Synergistic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130

    Article  Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285

    Article  Google Scholar 

  • Binet MN, Van Tuinen D, Deprêtre N, Koszela N, Chambon C, Gianinazzi S (2011) Arbuscular mycorrhizal fungi associated with Artemisia umbelliformis Lam, an endangered aromatic species in Southern French Alps, influence plant P and essential oil contents. Mycorrhiza 21:523–535

    Article  PubMed  CAS  Google Scholar 

  • Borde M, Dudhane M, Jite PK (2009) Role bioinoculant (AM fungi) increasing in growth, flavor content and yield in Allium sativum L. under field condition. Not Bot Hort Agrobot Cluj 37(2):124–128

    Google Scholar 

  • Cai BY, Jie WG, Ge JP, Yan XF (2008) Molecular detection of the arbuscular mycorrhizal fungi in the rhizosphere of Phellodendron amurense. Mycosystema 27(6):884–893

    CAS  Google Scholar 

  • Cao DX, Zhao JL (2007) The investigation of arbuscular mycorrhizal fungi and soil factors from the rhizospere of medicinal plant Angelica dahurica. Acta Agr Boreali-Sin 22:47–50

    Google Scholar 

  • Chaudhary V, Kapoor R, Bhatnagar AK (2008) Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40:174–181

    Article  Google Scholar 

  • Chen LT, Guo QS, Liu ZY (2009a) Colonization pattern and dynamic change of arbuscular mycorrhizal fungi in Pinellia ternate. Guizhou Agr Sci 37(2):37–39

    Google Scholar 

  • Chen LT, Liu ZY, Guo QS, Zhu GS (2009b) Advances in studies on arbuscular mycorrhizas in medicinal plants. Chin Tradi Herb Drugs 40(1):156–160

    CAS  Google Scholar 

  • Chen LT, Guo QS, Liu ZY (2010) Arbuscular mycorrhiza of cultivated and wild Pinellia ternate. Chin J Chin Mater Med 35(4):405–410

    CAS  Google Scholar 

  • Cho EJ, Lee DJ, Wee CD, Kim HL, Cheong YH, Cho JS, Sohn BK (2009) Effects of AM FUNGI inoculation on growth of Panax ginseng C.A. Meyer seedlings and on soil structures in mycorrhizosphere. Sci Hortic 122(4):633–637

    Article  CAS  Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494

    Article  PubMed  CAS  Google Scholar 

  • Fan JH, Yang GT, Mu LQ, Zhou JH (2006) Effect of AM fungi on the content of berberine, jatrorrhizine and palmatine of Phellodendron amurense seedings. Prot Forest Sci Technol 5:24–26

    Google Scholar 

  • Farahani HA, Lebaschi MH, Hamidi A (2008) Effects of arbuscular mycorrhizal fungi, phosphorus and water stress on quantity and quality characteristics of coriander. J Adv Nat Appl Sci 2(2):55–59

    CAS  Google Scholar 

  • Geneva MP, Stancheva IV, Boychinova MM, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702

    PubMed  CAS  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, Tuinen DV, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Gong MQ, Wang FZ, Chen Y (2002) Study on application of arbuscular-mycorrhizas in growing seedling of Aloe vera. J Chin Med Mater 25(1):1–3

    Google Scholar 

  • Guo LP, Wang HG, Hang LQ (2006) Effects of arbuscular mycorrhizae on growth and essential oil of Atractylodes lancea. Chin J Chin Mater Med 31(8):1491–1495

    Google Scholar 

  • Guo QS, Chen LT, Liu ZY (2010) Study on influence of arbuscular mycorrhizal fungi on Pinellia ternata yield and chemical composition. Chin J Chin Med 35(3):333–338

    Google Scholar 

  • Gupta ML, Prasad A, Ram M, Kumar S (2002) Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour Technol 81(1):77–79

    Article  PubMed  CAS  Google Scholar 

  • Hadwiger A, Neimann H, Kaebisch A, Bauer H, Tamura T (1986) Appropriate glucosylation of the FMS gene product is a prerequisite for its transforming potency. EMBO J 5:689–694

    PubMed  CAS  Google Scholar 

  • Harris JC, Cottrell S, Plummer S, Lloyd D (2001) Antimicrobial properties of Allium sativum (garlic). Appl Microbiol Biotechnol 57:282–286

    Article  PubMed  CAS  Google Scholar 

  • Harrison M (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Biol 50:361–389

    Article  CAS  Google Scholar 

  • He XL, Li J, Gao AX, Zhao LL, Zao JL (2009a) Effects of different host plants on the development of AM fungi in the rhizospere of Salvia miltiorrhiza. J Hebei Univers 29(5):533–537

    Google Scholar 

  • He XL, Li J, He C (2009b) Effects of AM fungi on the chemical components of Salvia miltiorrhiza Bge. Chin Agr Sci Bull 25(14):182–185

    Google Scholar 

  • He XL, Liu T, Zhao LL (2009c) Effects of inoculating AM fungi on physiological characters an nutritional components of Astragalus membranaceus under different N application levels. Chin J Appl Ecol 20(9):2118–2122

    CAS  Google Scholar 

  • He XL, Wang LY, Ma J, Zhao LL (2010) AM fungal diversity in the rhizosphere of Salvia miltiorrhiza in Anguo city of Hebei province. Biodiv Sci 18(2):187–194

    Google Scholar 

  • Huang YF, Li HH, Chen HY, Li Y (2003) Preliminary study on the mycorrhiza inoculation on the seeding of camptotheca acuminate. Guangdong ForestSci Technol 19(1):40–42

    Google Scholar 

  • Huang LQ, Chen ML, Xiao PG (2004) The modern biological basis and model hypothesis on the research of genuineness of Chinese herbal medicine. Chin J Chin Mater Med 29(6):494–496

    Google Scholar 

  • Huang JH, Tan JF, Jie HK, Zeng RS (2011) Effects of invoculating arbuscular mycorrhizal fungi on Artemisia annua growth and its officinal components. Chin J Appl Ecol 22(6):1443–1449

    CAS  Google Scholar 

  • Janardhanan KK, Abdul-Khaliq K (1995) Influence of vesicular arbuscular mycorrhizal fungi on growth and productivity of German chamomile in alkaline usar soil. In: Adholeya A, Singh S (eds) Mycorrhizae: Biofertilizers for the Future. Tata Energy Research InstituteNew, Delhi, pp 410–412

    Google Scholar 

  • Jeffries P, Gianinazzi S, Peretto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Jie WG, Cai BY, Ge JP, Yan XF (2007) Identification of arbuscular mycorrhizal fungi of Phellodendren amurense Rupr. Biotechnology 17(6):32–35

    CAS  Google Scholar 

  • Jurkiewicz A, Ryszka P, Anielska T, Waligórski P, Białońska D, Góralska K, Michael MT, Turnau K (2010) Optimization of culture conditions of Arnica montana L.: effects of mycorrhizal fungi and competing plants. Mycorrhiza 20:293–306

    Article  PubMed  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002a) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microb Biot 18:459–463

    Article  CAS  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002b) Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil. J Sci Food Agr 82:339–342

    Article  CAS  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol 93:307–311

    Article  PubMed  CAS  Google Scholar 

  • Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587

    Article  PubMed  CAS  Google Scholar 

  • Karagiannidis N, Thomidisa T, Lazari D, Filotheou EP, Karagiannidou C (2011) Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Sci Hortic 129:329–334

    Article  CAS  Google Scholar 

  • Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Scagel CF (2009) Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem 115(2):650–656

    Article  CAS  Google Scholar 

  • Li CX (2003a) Effect of vesicular-arbuscular mycorrhizal fungi on production of Ginseng. J Chin Med Mater 26(7):475–476

    Google Scholar 

  • Li CX (2003b) Effects of infecting vesicular-arbuscular mycorrhiza on growth and development of Coix Lachryma-jobi L. J Shanxi Agr Univers 23(4):351–353

    Google Scholar 

  • Liu T, He XL (2008) Research on the formation course of arbuscular mycorrhizae from Astragalus membranaceus (Fisch.) Bunge seedlings. J Hebei Fores Orc Res 23(3):311–314

    Google Scholar 

  • Liu SL, He XL (2009) Effects of AM fungi on growth of Glycyrrhiza inflata Bat under water stress. J Nuc Agr Sci 23(4):692–696

    Google Scholar 

  • Liu JN, Wu LJ, Wei SL, Xiao X, Su CX, Jiang P, Song ZB, Wang T, Yu ZL (2007) Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 52(1):29–39

    Article  CAS  Google Scholar 

  • Loomis WD, Corteau R (1972) Essential oil biosynthesis. Rec Adv Phytochem 6:147–185

    Google Scholar 

  • Lu YQ, He XL (2005) Effects of AM fungi on the chemical composition and growth amount of Atractylodes macrocephala koidz seedling on diffetent N levels. J Hebei Univers 25(6):650–653

    CAS  Google Scholar 

  • Lu YQ, He XL (2008) Effects of AM fungi on photosynthetic pigment of Atractylodes macrocephala under different nitrogen levels. Acta Agr Bor Occi Sin 17(4):314–316

    Google Scholar 

  • Lu YQ, Cui Y, He XL (2008a) Effects of AM fungi on biomass and nitrogen content of Atractylodes macrocephala under different nitrogen levels. J Henan Agr Sci 4:94–96

    Google Scholar 

  • Lu YQ, He XL, Li LZ (2008b) Effects of AM fungi on leaf protective enzymes of Atractrlodes macrocephala under different nitrogen levels. Hubei Agr Sci 47(6):659–660

    Google Scholar 

  • Lu YQ, Wang DX, Lu XL, Li LM, Li Y, He XL (2011) Effects of AM fungi on physiological character and nutritional component of Atractylodes macrocephala under different N levels. Acta Bot Bor Occi Sin 31(2):351–356

    CAS  Google Scholar 

  • Ma J, He XL, Jiang ZM, Wang LY (2009) Influence of soil factors on arbuscular mycorrhizal fungal colonization of Salvia miltiorrhiza. Acta Agr Bor Occi Sin 18(5):194–198

    Google Scholar 

  • Maier W, Schmidt J, Wray V, Walter MH, Strack D (1999) The arbuscular mycorrhizal fungus, Glomus intraradices, induces the accumulation of cyclohexenone derivatives in tobacco roots. Planta 207:620–623

    Article  CAS  Google Scholar 

  • Meng JJ, He XL (2011) Effects of AM fungi on growth and nutritional contents of Salvia miltiorrhiza Bge. under drought stress. J Agr Univ Hebei 34(1):51–61

    CAS  Google Scholar 

  • Morone Fortunato I, Avato P (2008) Plant development and synthesis of essential oils in micropropagated and mycorrhiza inoculated plants of Origanum vulgare L. ssp. hirtum (Link) Ietswaart. Plant Cell Tiss Org 93:139–149

    Article  CAS  Google Scholar 

  • Nell M, Vötsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franz C, Novak J (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden (Salvia officinalis L.). J Sci Food Agric 89:1090–1096

    Article  CAS  Google Scholar 

  • Nell M, Wawrosh C, Steinkellner S, Vierheilig H, Kopp B, Lössl A, Franz C, Novak J, Zitterl-Eglseer K (2010) Root solonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana of ficinalis L. Planta Med 76:393–398

    Article  PubMed  CAS  Google Scholar 

  • Pan PL, Chen DQ, Chen YT, Zhou FM (2008) The research on the sift and germinate of AM FUNGI spore of Ophiopogon japonicas. Mod Chin Med 10(10):13–14

    Google Scholar 

  • Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62:121–125

    Article  PubMed  CAS  Google Scholar 

  • Prasad A, Kumar S, Khaliq A, Pandey A (2011) Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.). Biol Fert Soils 47(8):853–861

    Article  CAS  Google Scholar 

  • Qi GH, Zhang LP, Yang WL, Lu XR, Li CL (2002) Effects of arbuscular mycorrhizal fungi on growth and disease resistance of replanted ginkgo (Ginkgo biloba L.) seedlings. J Hebei Forest Orch Res 17(1):58–61

    Google Scholar 

  • Qi GH, Zhang LP, Yang WL, Lv GY (2003) The effects of abruscular mycorrhiza fungi on ginkgo (Ginkgo biloba L.) in the field. Hebei Fruits 19(1):40–42

    Google Scholar 

  • Rapparini F, Llusia J, Penuelas J (2008) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Plant Biol 10:108–122

    Article  PubMed  CAS  Google Scholar 

  • Rasouli-Sadaghianil MH, Hassani A, Barin M, Danesh YR, Sefidkon F (2010) Effects of arbuscular mycorrhizal (AM) fungi on growth, essential oil production and nutrients uptake in basil. J Med Plants Res 4(21):2222–2228

    Google Scholar 

  • Ren JH, Liu RX, Li YL (2007) Study on arbuscular mycorrhizae of Panax notoginseng. Microbiology 34(2):224–227

    Google Scholar 

  • Ren JH, Zhang JF, Liu RX, Li YQ (2008) Study on arbuscular mycorrhizae in Taxus chinensis var. mairei. Acta Bot Bor Occi Sin 28(7):1468–1473

    Google Scholar 

  • Rojas-Andrade R, Cerda-GarcÍa-Rojas CM, FrÍas-Hernández JT, Dendooven L, Olalde-Portugal V, Ramos-Valdivia AC (2003) Changes in the concentration of trigonelline in a semi-arid leguminous plant (Prosopis laevigata) induced by an arbuscular mycorrhizal fungus during the presymbiotic phase. Mycorrhiza 13:49–52

    Article  PubMed  CAS  Google Scholar 

  • Rosa-Mera CJD, Ferrera-Cerrato R, Alarcón A, Sánchez-Colín MJ, David OD (2011) Arbuscular mycorrhizal fungi and potassium bicarbonate enhance the foliar content of the vinblastine alkaloid in Catharanthus roseus. Plant Soil 349:367–376

    Article  CAS  Google Scholar 

  • Sailo GS, Bagyaraj DJ (2005) Influence of different AM-fungi on the growth, nutrition and forskolin content of Coleus forskohlii. Mycol Res 109(7):795–798

    Article  PubMed  CAS  Google Scholar 

  • Shah V, Bhat SV, Bajwa BS, Domacur H, De SNJ (1980) The occurrence of forskolin in Labiatae. Planta Med 39:183–185

    Article  CAS  Google Scholar 

  • Shen XL, Guo QS, Liu ZY, Zhu GS, Liu YX (2011) Colonization progress of arbuscular mycorrhizae on tissue-cultured plantlets of Pinellia ternata. Chin J Chin Mater Med 36:93–96

    Google Scholar 

  • Singh R, Soni SK, Kalra A (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23:35–44

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Aca-demic Press Ltd., London

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Szakiel A, Pączkowski, Henry (2011a) Influence of environmental biotic factors on the content of saponins in plants. Phytochem Rev 10:493–502

    Article  CAS  Google Scholar 

  • Szakiel A, Pączkowski, Henry (2011b) Influence of environmental abiotic factors on the content of saponins in plants. Phytochem Rev 10:471–491

    Article  CAS  Google Scholar 

  • Teng HR, He XL (2005) Effects of different AM fungi and N levels on the flavonoid content of Bupleuruin scorzonerifolium Willd. J Shanxi Agr Sci 4:53–54

    Google Scholar 

  • Toussaint JP (2007) Investigating physiological changes in the aeria parts of AM plants: what do we know and where should we be heading? Mycorrhiza 17:349–353

    Article  PubMed  Google Scholar 

  • Toussaint JP, St-Arnaud M, Charest C (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol 50:251–260

    Article  PubMed  CAS  Google Scholar 

  • Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297

    Article  PubMed  CAS  Google Scholar 

  • Volpin H, Elkind Y, Okon Y, Kapulnik Y (1994) A vesicular arbuscular mycorrhizal fungus (Glomus intraradices) induces a defense response in alfalfa roots. Plant Physiol 104:683–689

    PubMed  CAS  Google Scholar 

  • Wang LY, He XL (2009) The resource and spatio-temproal distribution of AM fungi from Salvia miltiorrhiza in Anguo. J Agr Univ Hebei 32(6):73–79

    Google Scholar 

  • Wang Q, Li HQ, Du YR, Li Y, Li HW (1998) Isolation and identification of VA mycorrhizal fungi on Radix gentianae. Biotechnology 8(2):19–22

    CAS  Google Scholar 

  • Wang Q, He XL, Chen TS, Dou WF (2006) Ecological research of arbuscular mycorrhizal fungi in rhizosphere of Puerraria lobata. J Hebei Univ 26(4):420–425

    CAS  Google Scholar 

  • Wang DX, Lu YQ, He XL (2010) Effects of AM fungi on growth and physiological characters of Atractylodes Macrocephala under different P-applied levels. Acta Bot Bor Occi Sin 30(1):136–142

    Google Scholar 

  • Wei GT, Wang HG (1989) Effects of VA mycorrhizal fungi on growth, nutrient uptake and effective compounds in Chinese medicinal herb Datura stramonium L. Sci Agr Sin 22(5):56–61

    CAS  Google Scholar 

  • Wei GT, Wang HG (1991) Effect of vesicular-arbuscular mycorrhizal fungi on growth, nutrient uptake and synthesis of volatile oil in Schizonepeta tenuifolia Briq. Chin J Chin Mater Med 16(3):139–142

    CAS  Google Scholar 

  • Wu QC, Wei QA (2008) Arbuscular mycorrhizae of Ginkgo biloba and its correlation with soil available phosphorus. J Yangtze Univ 5(3):49–52

    Google Scholar 

  • Wu QS, Liu W, Zhai HF, Ye XF, Zhao LJ (2010) Influences of AM fungi on growth and root antioxidative enzymes of Trifoliate orange seedlings under salt stress. Acta Agr Univ Jiangxiensis 32(4):759–762

    CAS  Google Scholar 

  • Xiao WJ, Yang G, Chen ML, Guo LP, Wang M (2011) AM and its application in plant disease prevention of Chinese medicinal herbs cultivation. Chin J Chin Med 36(3):252–257

    Google Scholar 

  • Xing XK, Li Y, Yolande D (2000) Ten species of vAM fungi in five ginseng fields of Jilin province. J Jilin Agr Univ 22(2):41–46

    Google Scholar 

  • Xing XK, Li Y, Wang Y, Zhang MP (2003) Foundation of dual cultural system of ginseng VA mycorrhiza fungi. J Jilin Agr Univ 25(2):154–157

    Google Scholar 

  • Yang G, Guo LP, Huang LQ, Chen M (2008) Inoculation methods of AM fungi in medicinal plant. Resources Sci 30(5):778–785

    Google Scholar 

  • Yu Y, Yu T, Wang Y, Yan XF (2010) Effect of inoculation time on camptothecin content in arbuscular mycorrhizal Camptotheca acuminate seedlings. Chin J Plant Ecol 34(6):687–694

    CAS  Google Scholar 

  • Zeng Y, Guo LP, Hang LQ, Zhou J, Sun YZ (2007) AM and its application in TCM cultivation. World Sci Technol/Moder TCM Mater Med 9(6):83–87

    Google Scholar 

  • Zhang MC, Jing YJ, Ma J (1990) The changing of microbial ecological types after the improvement of ginseng soil. J Jilin Agr Univ 12(4):42–46

    Google Scholar 

  • Zhang Y, Xie LY, Xiong BQ, Zeng M, Yu D (2004) Correlation between the growth of arbuscular mycorrhizal fungi in the rhizosphere and the flavonoid content in the root of Ginkgo biloba. Mycosystema 23(1):133–138

    CAS  Google Scholar 

  • Zhang J, Liu DH, Guo LP, Jin H, Zhou J, Yang G (2010) Effects of four AM fungi on growth and essential oil composition in rhizome of Atractylodes lancea. World Sci Technol/Moder TCM Mater Med 12(5):779–782

    Google Scholar 

  • Zhang J, Liu DH, Guo LP, Jin H, Yang G, Zhou J (2011) Effects of arbuscular mycorrhizae fungi on biomass and essential oil in rhizome of Atractylodes lancea in different temperatures. Chin Tradi Her Drugs 42(2):372–375

    CAS  Google Scholar 

  • Zhao JL, He XL (2011) Effects of AM fungi on drought resistance and content of chemical components in Angelica dahurica. Acta Agr Bor Occi Sin 20(3):184–189

    CAS  Google Scholar 

  • Zhao X, Wang BW, Yan XF (2006) Effect of arbuscular mycorrhiza on camptothecin content in Camptotheca acuminate seedlings. Acta Ecol Sin 26(4):1057–1062

    CAS  Google Scholar 

  • Zhao PJ, An F, Tang M (2007) Effects of arbuscular mycorrhiza fungi on drought resistance of Forsythia suspense. Acta Bot Bor Occi Sin 27(2):396–399

    CAS  Google Scholar 

  • Zhao JL, Deng HY, He XL (2009) Effects of AM fungi on the quality of trueborn Angelica dahurica from Hebei province. Acta Agr Boreali-Sin 24:299–302

    Google Scholar 

  • Zhou JH, Fan JH (2007) Effects of AM fungi on the berberine content in Phellodendron chinense seedings. North Hortic 12:25–27

    Google Scholar 

  • Zhou N, Xia CL, Jiang B, Bai ZC, Liu GN, Ma XK (2009) Arbuscular mycorrhiza in Paris polyphylla var. yunnanensis. Chin J Chin Med 34(14):1768–1772

    Google Scholar 

  • Zhou N, Zou L, Wang GZ, Jiang B (2010) Primary explore to relation of arbuscular mycorrhizae and its secondary metabolite steroidal saponin in Paris polyphylla. Chin J Exper Trad Med Formulae 16(16):85–88

    Google Scholar 

  • Zubek S, Stojakowska A, Anielska T, Turnau K (2010) Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Mycorrhiza 20:497–504

    Article  PubMed  CAS  Google Scholar 

  • Zubek S, Mielcarek S, Turnau K (2012) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (NSFC) (81130070, 81072989, and 41101245), Special Industry Research Project by State Administration of Traditional Chinese Medicine (201107009), International Technical Cooperation Project (2009DFA31660), Project of Science and Technology Plan of Yunnan Province (2008IF025-4) and Research Project of Academy of Chinese Medical Sciences of China (ZZ20090302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Qi Huang.

Additional information

Yan Zeng and Lan-Ping Guo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Y., Guo, LP., Chen, BD. et al. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza 23, 253–265 (2013). https://doi.org/10.1007/s00572-013-0484-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0484-0

Keywords

Navigation