Skip to main content

Advertisement

Log in

Toxic effect of different types of titanium dioxide nanoparticles on Ceriodaphnia dubia in a freshwater system

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the current study, the effect of different types of titanium dioxide (TiO2) nanoparticles (NPs) (rutile, anatase, and mixture) was analyzed on Ceriodaphnia dubia in the presence of algae under distinct irradiation conditions such as visible and UV-A. The toxicity experiments were performed in sterile freshwater to mimic the chemical composition of the freshwater system. In addition, the oxidative stress biomarkers such as MDA, catalase, and GSH were analyzed to elucidate the stress induced by the NPs on daphnids. Individually, both rutile and anatase NPs induced similar mortality under both visible and UV-A irradiations at all the test concentrations except 600 and 1200 μM where rutile induced higher mortality under UV-A. Upon visible irradiation, the binary mixture exhibited a synergistic effect at their lower concentration and an additive effect at higher concentrations. In contrast, UV-A irradiation demonstrated the additive effect of mixture except for 1200 μM which elucidated antagonistic effect. Mathematical model confirmed the effects of the binary mixture. The surface interaction between the individual NPs in the form of aggregation played a pivotal role in the induction of specific effects exhibited by the binary mixture. Oxidative stress biomarkers were highly increased upon NPs exposure especially under visible irradiation. These observations elucidated that the irradiation and crystallinity effect of TiO2 NPs were noted only on certain biomarkers and not on the mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbott W (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Aebi H (1974) Catalase. In: Methods of enzymatic analysis (second edition), volume 2. Elsevier, pp 673-684

  • Aiken GR, Hsu-Kim H, Ryan JN (2011) Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. ACS Publications

  • Allen HJ, Impellitteri CA, Macke DA, Heckman JL, Poynton HC, Lazorchak JM, Govindaswamy S, Roose DL, Nadagouda MN (2010) Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ Toxicol Chem 29:2742–2750

    Article  CAS  Google Scholar 

  • Bagnyukova TV, Chahrak OI, Lushchak VI (2006) Coordinated response of goldfish antioxidant defenses to environmental stress. Aquat Toxicol 78:325–331

    Article  CAS  Google Scholar 

  • Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P (2014) Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev 114:10095–10130

    Article  CAS  Google Scholar 

  • Barata C, Varo I, Navarro JC, Arun S, Porte C (2005) Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp Biochem Physiol Part C: Toxicol Pharmacol 140:175–186

    Google Scholar 

  • Borgeraas J, Hessen DO (2000) UV-B induced mortality and antioxidant enzyme activities in Daphnia magna at different oxygen concentrations and temperatures. J Plankton Res 22:1167–1183

    Article  CAS  Google Scholar 

  • Botta C et al (2011) TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective. Struct Quant Environ Poll 159:1543–1550. https://doi.org/10.1016/j.envpol.2011.03.003

    Article  CAS  Google Scholar 

  • Bottero J-Y, Wiesner MR (2010) Considerations in evaluating the physicochemical properties and transformations of inorganic nanoparticles in water. Nanomedicine 5:1009–1014

    Article  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) [30] Microsomal lipid peroxidation. In: Methods in enzymology, vol 52. Elsevier, pp 302-310

  • Chesworth J, Donkin M, Brown M (2004) The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L.). Aquat Toxicol 66:293–305

    Article  CAS  Google Scholar 

  • Chowdhury I, Cwiertny DM, Walker SL (2012) Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria. Environ Sci Technol 46:6968–6976

    Article  CAS  Google Scholar 

  • Clemente Z, Castro V, Jonsson C, Fraceto L (2014) Minimal levels of ultraviolet light enhance the toxicity of TiO2 nanoparticles to two representative organisms of aquatic systems. J Nanopart Res 16:2559

    Article  CAS  Google Scholar 

  • Conine AL, Frost PC (2017) Variable toxicity of silver nanoparticles to Daphnia magna: effects of algal particles and animal nutrition. Ecotoxicology 26:118–126

    Article  CAS  Google Scholar 

  • Costa PCDO (2015) Effects of mixture of nanoparticles under different salinity in the clams Ruditapes philippinarum and Ruditapes decussatus

  • Dalai S, Iswarya V, Bhuvaneshwari M, Pakrashi S, Chandrasekaran N, Mukherjee A (2014) Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation. Aquat Toxicol 152:139–146

    Article  CAS  Google Scholar 

  • Dalai S, Pakrashi S, Nirmala MJ, Chaudhri A, Chandrasekaran N, Mandal A, Mukherjee A (2013) Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system. Aquat Toxicol 138:1–11

    Article  CAS  Google Scholar 

  • Das P, Xenopoulos MA, Metcalfe CD (2013) Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna. Bull Environ Contam Toxicol 91:76–82

    Article  CAS  Google Scholar 

  • Domingos RF, Peyrot C, Wilkinson KJ (2010) Aggregation of titanium dioxide nanoparticles: role of calcium and phosphate. Environ Chem 7:61–66

    Article  CAS  Google Scholar 

  • Fan J, Li Z, Zhou W, Miao Y, Zhang Y, Hu J, Shao G (2014) Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance. Appl Surf Sci 319:75–82

    Article  CAS  Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415–430

    Article  CAS  Google Scholar 

  • Gao C, Zhang X, Xu N, Tang X Toxic effects of combined effects of anthracene and UV radiation on Brachionus plicatilis. In: IOP Conference Series: earth and environmental science, 2017. vol 1. IOP Publishing, p 012121

  • Gondikas AP, Kammer F, Reed RB, Wagner S, Ranville JF, Hofmann T (2014) Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational Lake. Environ Sci Technol 48:5415–5422

    Article  CAS  Google Scholar 

  • Gottschalk F, Lassen C, Kjoelholt J, Christensen F, Nowack B (2015) Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. Int J Environ Res Public Health 12:5581–5602

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, USA

    Book  Google Scholar 

  • Harifi T, Montazer M (2017) Application of nanotechnology in sports clothing and flooring for enhanced sport activities, performance, efficiency and comfort: a review. J Ind Text 46:1147–1169

    Article  Google Scholar 

  • Hegde K, Brar SK, Verma M, Surampalli RY (2016) Current understandings of toxicity, risks and regulations of engineered nanoparticles with respect to environmental microorganisms. Nanotechnol Environ Eng 1:5. https://doi.org/10.1007/s41204-016-0005-4

    Article  Google Scholar 

  • Huang Y-W, Wu C-h, Aronstam RS (2010) Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials 3:4842–4859

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res Int 13:225–232. https://doi.org/10.1065/espr2006.06

    Article  CAS  Google Scholar 

  • Iswarya V, Bhuvaneshwari M, Alex SA, Iyer S, Chaudhuri G, Chandrasekaran PT, Bhalerao GM, Chakravarty S, Raichur AM, Chandrasekaran N, Mukherjee A (2015) Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquat Toxicol 161:154–169. https://doi.org/10.1016/j.aquatox.2015.02.006

    Article  CAS  Google Scholar 

  • Iswarya V, Manivannan J, de A, Paul S, Roy R, Johnson JB, Kundu R, Chandrasekaran N, Mukherjee A, Mukherjee A (2016b) Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels. Environ Sci Pollut Res 23:4844–4858

    Article  CAS  Google Scholar 

  • Iswarya V, Bhuvaneshwari M, Chandrasekaran N, Mukherjee A (2016a) Individual and binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia. Aquat Toxicol 178:209–221. https://doi.org/10.1016/j.aquatox.2016.08.007

    Article  CAS  Google Scholar 

  • Iswarya V, Bhuvaneshwari M, Chandrasekaran N, Mukherjee A (2018) Trophic transfer potential of two different crystalline phases of TiO2 NPs from Chlorella sp. to Ceriodaphnia dubia. Aquat Toxicol 197:89–97

    Article  CAS  Google Scholar 

  • Jacobasch C, Völker C, Giebner S, Völker J, Alsenz H, Potouridis T, Heidenreich H, Kayser G, Oehlmann J, Oetken M (2014) Long-term effects of nanoscaled titanium dioxide on the cladoceran Daphnia magna over six generations. Environ Pollut 186:180–186

    Article  CAS  Google Scholar 

  • Jiang LC, Zhang WD (2009) Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing. Electroanalysis 21:988–993

    Article  CAS  Google Scholar 

  • Kathawala MH, Ng KW, Loo SCJ (2015) TiO2 nanoparticles alleviate toxicity by reducing free Zn2+ ion in human primary epidermal keratinocytes exposed to ZnO nanoparticles. J Nanopart Res 17:263

    Article  CAS  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692

    Article  Google Scholar 

  • Kim KT, Klaine SJ, Cho J, Kim S-H, Kim SD (2010) Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction. Sci Total Environ 408:2268–2272

    Article  CAS  Google Scholar 

  • Knapen MF, Zusterzeel PL, Peters WH, Steegers EA (1999) Glutathione and glutathione-related enzymes in reproduction: a review. Eur J Obstet Gynecol Reprod Biol 82:171–184

    Article  CAS  Google Scholar 

  • Ko K-S, Koh D-C, Kong IC (2017) Evaluation of the effects of nanoparticle mixtures on Brassica seed germination and bacterial bioluminescence activity based on the theory of probability. Nanomaterials 7:344

    Article  CAS  Google Scholar 

  • Ko K-S, Koh D-C, Kong IC (2018) Toxicity evaluation of individual and mixtures of nanoparticles based on algal chlorophyll content and cell count. Materials 11:121

    Article  CAS  Google Scholar 

  • Lampert W (1987) Laboratory studies on zooplankton-cyanobacteria interactions New Zealand. Aust J Mar Freshwat Res 21:483–490

    Article  Google Scholar 

  • Li S, Ma H, Wallis LK, Etterson MA, Riley B, Hoff DJ, Diamond SA (2016) Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles. Sci Total Environ 542:324–333. https://doi.org/10.1016/j.scitotenv.2015.09.141

    Article  CAS  Google Scholar 

  • Lu G, Yang H, Xia J, Zong Y, Liu J (2017a) Toxicity of Cu and Cr nanoparticles to Daphnia magna water. Air Soil Pollut 228:18

    Article  CAS  Google Scholar 

  • Lu H, Fan W, Dong H, Liu L (2017b) Dependence of the irradiation conditions and crystalline phases of TiO2 nanoparticles on their toxicity to Daphnia magna. Environ Sci Nano 4:406–414

    Article  CAS  Google Scholar 

  • McWilliams A, (2014) global markets for nanocomposites, nanoparticles, nanoclays, and nanotubes. BBC Research

  • Metreveli G et al (2016) Impact of chemical composition of ecotoxicological test media on the stability and aggregation status of silver nanoparticles. Environ Sci Nano 3:418–433

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  Google Scholar 

  • Mwaanga P, Carraway ER, van den Hurk P (2014) The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles. Aquat Toxicol 150:201–209

    Article  CAS  Google Scholar 

  • Nur Y, Lead J, Baalousha M (2015) Evaluation of charge and agglomeration behavior of TiO2 nanoparticles in ecotoxicological media. Sci Total Environ 535:45–53

    Article  CAS  Google Scholar 

  • OECD (2004) Test no. 202: Daphnia sp. acute immobilisation test. OECD Publishing

  • Ou G, Li Z, Li D, Cheng L, Liu Z, Wu H (2016) Photothermal therapy by using titanium oxide nanoparticles. Nano Res 9:1236–1243

    Article  CAS  Google Scholar 

  • Reeves JF, Davies SJ, Dodd NJ, Jha AN (2008) Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells mutation research/fundamental and molecular mechanisms of mutagenesis. Mutat Res 640:113–122

    Article  CAS  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  CAS  Google Scholar 

  • Sendra M, Moreno-Garrido I, Yeste M, Gatica J, Blasco J (2017) Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation. Environ Pollut 227:39–48

    Article  CAS  Google Scholar 

  • Shandilya N, Le Bihan O, Bressot C, Morgeneyer M (2015) Emission of titanium dioxide nanoparticles from building materials to the environment by wear and weather. Environ Sci Technol 49:2163–2170

    Article  CAS  Google Scholar 

  • Sillanpää M, Paunu T-M, Sainio P Aggregation and deposition of engineered TiO2 nanoparticles in natural fresh and brackish waters. In: Journal of Physics: Conference Series, 2011. vol 1. IOP Publishing, p 012018

  • Sun J, Guo L-H, Zhang H, Zhao L (2014) UV irradiation induced transformation of TiO2 nanoparticles in water: aggregation and photoreactivity. Environ Sci Technol 48:11962–11968

    Article  CAS  Google Scholar 

  • Tatarazako N, Oda S (2007) The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans. Ecotoxicology 16:197–203

    Article  CAS  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780

    Article  CAS  Google Scholar 

  • Vlahogianni T, Dassenakis M, Scoullos MJ, Valavanidis A (2007) Integrated use of biomarkers (superoxide dismutase, catalase and lipid peroxidation) in mussels Mytilus galloprovincialis for assessing heavy metals’ pollution in coastal areas from the Saronikos Gulf of Greece. Mar Pollut Bull 54:1361–1371

    Article  CAS  Google Scholar 

  • Wang A-n, Teng Y, Hu X-f, Wu L-h, Y-j H, Luo Y-m, Christie P (2016) Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: degradation pathway, optimization of operating parameters and effects of soil properties. Sci Total Environ 541:348–355

    Article  CAS  Google Scholar 

  • Wang Z et al (2017) Trophic transfer of TiO2 nanoparticles from marine microalga (Nitzschia closterium) to scallop (Chlamys farreri) and related toxicity. Environ Sci: Nano 4:415–424

    CAS  Google Scholar 

  • Windler L, Lorenz C, von Goetz N, Hungerbuhler K, Amberg M, Heuberger M, Nowack B (2012) Release of titanium dioxide from textiles during washing. Environ Sci Technol 46:8181–8188

    Article  CAS  Google Scholar 

  • Wormington AM, Coral J, Alloy MM, Delmarè CL, Mansfield CM, Klaine SJ, Bisesi JH, Roberts AP (2017) Effect of natural organic matter on the photo-induced toxicity of titanium dioxide nanoparticles. Environ Toxicol Chem 36:1661–1666

    Article  CAS  Google Scholar 

  • Yang Y, Doudrick K, Bi X, Hristovski K, Herckes P, Westerhoff P, Kaegi R (2014) Characterization of food-grade titanium dioxide: the presence of nanosized particles. Environ Sci Technol 48:6391–6400

    Article  CAS  Google Scholar 

  • Ye N, Wang Z, Fang H, Wang S, Zhang F (2017) Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to Scenedesmus obliquus. J Environ Sci Health A 52:555–560

    Article  CAS  Google Scholar 

  • Ye N, Wang Z, Wang S, Peijnenburg WJ (2018) Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: particles outperform dissolved ions. Nanotoxicology 12:1–16

    Article  CAS  Google Scholar 

  • Yu H, Pan J, Bai Y, Zong X, Li X, Wang L (2013) Hydrothermal synthesis of a crystalline rutile TiO2 nanorod based network for efficient dye-sensitized solar cells. Chem-A Eur J 19:13569–13574

    Article  CAS  Google Scholar 

  • Zahra Z, Waseem N, Zahra R, Lee H, Badshah MA, Mehmood A, Choi HK, Arshad M (2017) Growth and metabolic responses of rice (Oryza sativa L.) cultivated in phosphorus-deficient soil amended with TiO2 nanoparticles. J Agric Food Chem 65:5598–5606

    Article  CAS  Google Scholar 

  • Zou X, Shi J, Zhang H (2014) Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks? Aquat Toxicol 154:168–175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the School of Advanced Sciences (SAS), Vellore Institute of Technology, Vellore, for the TEM facility employed in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Mukherjee.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iswarya, V., Palanivel, A., Chandrasekaran, N. et al. Toxic effect of different types of titanium dioxide nanoparticles on Ceriodaphnia dubia in a freshwater system. Environ Sci Pollut Res 26, 11998–12013 (2019). https://doi.org/10.1007/s11356-019-04652-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04652-x

Keywords

Navigation