Skip to main content
Log in

Amine-functionalized Single-walled Carbon Nanotube/Polycaprolactone Electrospun Scaffold for Bone Tissue Engineering: in vitro Study

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNT) are beneficent candidates for bone tissue engineering (BTE) applications, mostly because of their superior mechanical properties. Although the previous studies confirmed that single-walled carbon nanotubes (SWNTs) have significant effect on biomedical applications but there is no study reported the effect of SWNTs on properties of the PCL scaffolds for BTE applications. The purpose of this study was to evaluate the effect of aminefunctionalized single-walled carbon nanotubes (aSWNTs) on mechanical properties and in vitro behavior of Polycaprolacton (PCL) scaffolds. PCL as a biocompatible polymeric matrix was composited with different amounts (ranging from 0, 0.1, 0.2, 0.5 wt.%) of aSWNTs to enhance structural and functional properties of electrospun scaffolds. Attachment, proliferation, differentiation of rat bone marrow-derived mesenchymal stem cells (rMSCs) seeded onto the scaffolds was analyzed. The morphology and mechanical properties of the scaffolds were characterized using SEM and tensile test. The results indicated that the addition of aSWNTs heightened the tensile strength while bioactivity and degradation rate were increased. Also, the addition of aSWNTs has significantly amplified the electrical conductivity of PCL solution and resulted in the thinner fibers with more uniform size distribution. Attachment, proliferation and differentiation of rMSCs were significantly improved. Although the best mechanical property was achieved in the scaffold with 0.2 wt% aSWNT, but the composite scaffold with 0.5 wt% aSWNT significantly shows superior proliferation and differentiation of the rMSCs. Alkaline phosphatase activity demonstrated elevated differentiation of cells on nanocomposite scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Berthiaume, T. J. Maguire, and M. L. Yarmush, Ann. Rev. Chem. Biomol. Eng., 2, 403 (2011).

    Article  Google Scholar 

  2. R. Dimitriou, E. Jones, D. McGonagle, and P. V. Giannoudis, BMC Medicine, 9, 1 (2011).

    Article  Google Scholar 

  3. A. R. Costa-Pinto, R. L. Reis, and N. M. Neves, Tissue Eng. Part B: Rev., 17, 331 (2011).

    Article  CAS  Google Scholar 

  4. M. Asadi-Eydivand, M. Solati-Hashjin, S. S. Shafiei, S. Mohammadi, M. Hafezi, and N. A. A. Osman, PloS One, 11, e0151216 (2016).

    Article  Google Scholar 

  5. C. Zhao, A. Tan, G. Pastorin, and H. K. Ho, Biotechnol. Adv., 31, 654 (2013).

    Article  Google Scholar 

  6. A. Oryan, S. Alidadi, A. Moshiri, and N. Maffulli, J. Orthop. Surg. Res., 9, 1 (2014).

    Article  Google Scholar 

  7. S. Snigdha and J. C. Neill, Behavioural Brain Research, 191, 26 (2008).

    Article  CAS  Google Scholar 

  8. M. A. Woodruff and D. W. Hutmacher, Prog. Polym. Sci., 35, 1217 (2010).

    Article  CAS  Google Scholar 

  9. F. Luo, T. L. Sun, T. Nakajima, T. Kurokawa, A. B. Ihsan, X. Li, H. Guo, and J. P. Gong, ACS Macro Lett., 4, 961 (2015).

    Article  CAS  Google Scholar 

  10. S. W. Crowder, V. Leonardo, T. Whittaker, P. Papathanasiou, and M. M. Stevens, Cell Stem Cell, 18, 39 (2016).

    Article  CAS  Google Scholar 

  11. A. K. Gaharwar, S. Mukundan, E. Karaca, A. Dolatshahi-Pirouz, A. Patel, K. Rangarajan, S. M. Mihaila, G. Iviglia, H. Zhang, and A. Khademhosseini, Tissue Eng. Part A, 20, 2088 (2014).

    Article  CAS  Google Scholar 

  12. H. Cao and N. Kuboyama, Bone, 46, 386 (2010).

    Article  CAS  Google Scholar 

  13. S. S. Shafiei, M. Shavandi, G. Ahangari, and F. Shokrolahi, Appl. Clay Sci., 127, 52 (2016).

    Article  Google Scholar 

  14. S. Mohammadi, S. S. Shafiei, M. Asadi-Eydivand, M. Ardeshir, and M. Solati-Hashjin, J. Bioact. Compat. Polym., 32, 325 (2017).

    Article  CAS  Google Scholar 

  15. S. Wei, C. Jian, F. Xu, T. Bao, S. Lan, G. Wu, B. Qi, Z. Bai, and A. Yu, J. Biomater. Appl., 0885328218754462 (2018).

    Google Scholar 

  16. K. Ghosal, A. Manakhov, L. Zajíčkova, and S. Thomas, Aaps Pharmscitech, 18, 72 (2017).

    Article  CAS  Google Scholar 

  17. I. Akhtar, F. Hashmi, F. Ashraf, D. Salim, R. Amin, and F. Azam, Pac. J. Life Sci., 2, 117 (2014).

    Google Scholar 

  18. E. Elias, N. Chandran, F. G. Souza, and S. Thomas, RSC Adv., 6, 21376 (2016).

    Article  CAS  Google Scholar 

  19. M. Mattioli-Belmonte, G. Vozzi, Y. Whulanza, M. Seggiani, V. Fantauzzi, G. Orsini, and A. Ahluwalia, Mater. Sci. Eng.: C, 32, 152 (2012).

    Article  CAS  Google Scholar 

  20. R. M. Allaf, I. V. Rivero, and I. N. Ivanov, Int. J. Polym. Mater. Polym. Biomater., 66, 183 (2017).

    Article  CAS  Google Scholar 

  21. F. Luo, L. Pan, G. Hong, T. Wang, X. Pei, J. Wang, and Q. Wan, J. Biomater. Tissue Eng., 7, 787 (2017).

    Article  Google Scholar 

  22. A. Shahini, M. Yazdimamaghani, K. J. Walker, M. A. Eastman, H. Hatami-Marbini, B. J. Smith, J. L. Ricci, S. V. Madihally, D. Vashaee, and L. Tayebi, Int. J. Nanomed., 9, 167 (2014).

    Google Scholar 

  23. G. Zhao, X. Zhang, T. J. Lu, and F. Xu, Adv. Funct. Mater., 25, 5726 (2015).

    Article  CAS  Google Scholar 

  24. G. Zhao, H. Qing, G. Huang, G. M. Genin, T. J. Lu, Z. Luo, F. Xu, and X. Zhang, NPG Asia Mater., 10, 982 (2018).

    Article  CAS  Google Scholar 

  25. L. Pan, X. Pei, R. He, Q. Wan, and J. Wang, Colloids and Surfaces B: Biointerfaces, 93, 226 (2012).

    Article  CAS  Google Scholar 

  26. S. Kumar, S. Bose, and K. Chatterjee, RSC Adv., 4, 19086 (2014).

    Article  CAS  Google Scholar 

  27. K. A. Anand, T. S. Jose, U. Agarwal, T. Sreekumar, B. Banwari, and R. Joseph, Int. J. Polym. Mater., 59, 438 (2010).

    Article  CAS  Google Scholar 

  28. M. Flores-Cedillo, K. Alvarado-Estrada, A. Pozos-Guillén, J. Murguía-Ibarra, M. Vidal, J. Cervantes-Uc, R. Rosales-Ibáñez, and J. Cauich-Rodríguez, J. Mater. Sci.: Mater. Med., 27, 35 (2016).

    CAS  Google Scholar 

  29. S. Zhao, C. Li, Y. Zhou, S. Wang, F. Su, J. Cui, and Y. Yan, Carbon, 77, 846 (2014).

    Article  CAS  Google Scholar 

  30. S. W. Crowder, Y. Liang, R. Rath, A. M. Park, S. Maltais, P. N. Pintauro, W. Hofmeister, C. C. Lim, X. Wang, and H.-J. Sung, Nanomedicine, 8, 1763 (2013).

    Article  CAS  Google Scholar 

  31. J. He, F. Xu, R. Dong, B. Guo, and D. Li, Biofabrication, 9, 015007 (2017).

    Article  Google Scholar 

  32. K. Bicy, V. Geethamma, N. Kalarikkal, D. Rouxel, and S. Thomas, Macromolecular Symposia, 381, 1800140 (2018).

    Article  Google Scholar 

  33. S. Thomas, R. Thomas, A. K. Zachariah, and R. K. Mishra, “Thermal and Rheological Measurement Techniques for Nanomaterials Characterization”, Elsevier, 2017.

    Google Scholar 

  34. D. G. Papageorgiou, E. Roumeli, Z. Terzopoulou, V. Tsanaktsis, K. Chrissafis, and D. Bikiaris, J. Anal. Appl. Pyrol., 115, 125 (2015).

    Article  CAS  Google Scholar 

  35. H. Park, D.-J. Lim, S.-H. Lee, and H. Park, J. Biomed. Nanotechnol., 12, 2076 (2016).

    Article  CAS  Google Scholar 

  36. U. D'Amora, M. D'Este, D. Eglin, F. Safari, C. M. Sprecher, A. Gloria, R. D. Santis, M. Alini, and L. Ambrosio, J. Tissue Eng. Regen. Med., 12, 321 (2018).

    Article  CAS  Google Scholar 

  37. K. Ghosal, A. Chandra, G. Praveen, S. Snigdha, S. Roy, C. Agatemor, S. Thomas, and I. Provaznik, Scientific Reports, 8, 5058 (2018).

    Article  Google Scholar 

  38. R. Augustine, P. Dan, A. Sosnik, N. Kalarikkal, N. Tran, B. Vincent, S. Thomas, P. Menu, and D. Rouxel, Nano Res., 10, 3358 (2017).

    Article  CAS  Google Scholar 

  39. T. Kokubo and H. Takadama, Biomaterials, 27, 2907 (2006).

    Article  CAS  Google Scholar 

  40. C. M. B. Ho, A. Mishra, P. T. P. Lin, S. H. Ng, W. Y. Yeong, Y. J. Kim, and Y. J. Yoon, Macromol. Biosci., 17 (2017).

  41. E. Roumeli, D. G. Papageorgiou, U. Tsanaktsis, Z. Terzopoulou, K. Chrissafis, A. Avgeropoulos, and D. N. Bikiaris, ACS Appl. Mater. Interfaces, 7, 11683 (2015).

    Article  CAS  Google Scholar 

  42. T. Elzein, M. Nasser-Eddine, C. Delaite, S. Bistac, and P. Dumas, J. Colloid and Interface Sci., 273, 381 (2004).

    Article  CAS  Google Scholar 

  43. A. K. Jaiswal, V. Chandra, R. R. Bhonde, V. P. Soni, and J. R. Bellare, J. Bioact. Compat. Polym., 27, 356 (2012).

    Article  Google Scholar 

  44. X. Shi, B. Sitharaman, Q. P. Pham, F. Liang, K. Wu, W. E. Billups, L. J. Wilson, and A. G. Mikos, Biomaterials, 28, 4078 (2007).

    Article  CAS  Google Scholar 

  45. D. G. Goodwin Jr, I. Boyer, T. Devahif, C. Gao, B. P. Frank, X. Lu, L. Kuwama, T. B. Gordon, J. Wang, and J. F. Ranville, Environ. Sci. Technol., 52, 40 (2017).

    Article  Google Scholar 

  46. D. C. Phan, D. G. Goodwin, B. P. Frank, E. J. Bouwer, and D. H. Fairbrother, Sci. Total Envir., 639, 804 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially financially supported by National institute of genetic engineering and biotechnology, grant No960701-I-658.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedeh Sara Shafiei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tohidlou, H., Shafiei, S.S., Abbasi, S. et al. Amine-functionalized Single-walled Carbon Nanotube/Polycaprolactone Electrospun Scaffold for Bone Tissue Engineering: in vitro Study. Fibers Polym 20, 1869–1882 (2019). https://doi.org/10.1007/s12221-019-1262-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-1262-1

Keywords

Navigation