Skip to main content
Log in

New trends in the electrochemical detection of endocrine disruptors in complex media

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Endocrine disruptors (EDCs) are substances existing in the environment which affect animal and human endocrine functions and cause diseases. A small quantity of EDCs can have a serious impact on the body. Currently, enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and other traditional methods are used to detect EDCs. Although their sensitivity and reliability are good, these methods are complex, expensive, and not feasible to use in the field. Electrochemical techniques present good potential for the detection of EDCs owing to their low cost, simple, and wearable instrumentation. This paper presents the new trends in this field over the last 3 years. Some simple materials can allow some EDCs to be directly detected. New designs of biosensors, such as aptasensors, allow a femtomolar limit of detection to be reached. Many types of nanomaterial-based sensors were tested; carbonaceous nanomaterials, such as multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (rGO), associated or not with other types of nanoparticles were included in numerous designs. Molecularly imprinted polymer (MIP)-based sensors constitute an emerging field. All the presented electrochemical sensors were successfully tested for the detection of EDCs in different types of real samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Commission of the European Communities. Community Strategy for Endocrine Disrupters: a range of substances suspected of interfering with the hormone systems of humans and wildlife. COM(1999) 706 final.

  2. Metzler M, Pfeiffer E. Chemistry of natural and anthropogenic endocrine active compounds. In: Metzler M, editor. The handbook of environmental chemistry vol.3, part I: Endocrine disruptors. Berlin: Springer-Verlag; 2001. p. 63–80 (ISBN 978–3–540-48428-8).

  3. Campíns-Falcó P, Verdú-Andrés J, Sevillano-Cabeza A, Herráez-Hernández R, Molins-Legua C, Moliner-Martinez Y. In-tube solid-phase microextraction coupled by in valve mode to capillary LC-DAD: improving detectability to multiresidue organic pollutants analysis in several whole waters. J Chromatogr A. 2010;1217:2695–702.

    PubMed  Google Scholar 

  4. Czarny K, Szczukocki D, Krawczyk B, Zieliński M, Miękoś E, Gadzała-Kopciuch R. The impact of estrogens on aquatic organisms and methods for their determination. Crit Rev Environ Sci Technol. 2017;47:909–63.

    CAS  Google Scholar 

  5. Herrera-Herrera AV, Asensio-Ramos M, Javier Hernàndez-Borges J, Angel Rodriguez-Delgado M. Dispersive liquid-liquid microextraction for determination of organic analytes. TrAC Trends Anal Chem. 2010;29:7.

    Google Scholar 

  6. Brocenschi RF, Silva TA, Lourencao BC, Fatibello-Filho O, Rocha-Filho RC. Use of a boron-doped diamond electrode to assess the electrochemical response of the naphthol isomers and to attain their truly simultaneous electroanalytical determination. Electrochim Acta. 2017;243:374–81.

    CAS  Google Scholar 

  7. Gerent GG, Spinelli A. Environmentally-friendly in situ plated bismuth-film electrode for the quantification of the endocrine disruptor parathion in skimmed milk. J Hazard Mater. 2016;308:157–63.

    CAS  PubMed  Google Scholar 

  8. E-Desoky HS, Ghoneim MM, Khattab AE. A first efficient voltammetric approach for detection of octreotide, an octapeptide analogue of somastatin natural hormone, in sandostatin intramuscular injection and human plasma based on modification free electrochemical sensors. J Electrochem Soc. 2019;166:B276–89.

    Google Scholar 

  9. Han Y, Diao DL, Lu ZW, Li XN, Guo Q, Huo YM, et al. Selection of group-specific phthalic acid esters binding DNA aptamers via rationally designed target immobilization and applications for ultrasensitive and highly selective detection of phthalic acid esters. Anal Chem. 2017;89:5270–7.

    CAS  PubMed  Google Scholar 

  10. Liang YR, Zhang ZM, Liu ZJ, Wang K, Wu XY, Zeng K, et al. A highly sensitive signal-amplified gold nanoparticle-based electrochemical immunosensor for dibutyl phthalate detection. Biosens Bioelectron. 2017;91:199–202.

    CAS  PubMed  Google Scholar 

  11. Rather JA, Khudaish EA, Kannan P. Graphene-amplified femtosensitive aptasensing of estradiol, an endocrine disruptor. Analyst. 2018;143:1835–45.

    CAS  PubMed  Google Scholar 

  12. Singh AC, Asif MH, Bacher G, Danielsson B, Willander M, Bhand S. Nanoimmunosensor based on ZnO nanorods for ultrasensitive detection of 17β-estradiol. Biosens Bioelectron. 2019;126:15–22.

    CAS  PubMed  Google Scholar 

  13. Jeong G, Oh J, Jang J. Fabrication of N-doped multidimensional carbon nanofibers for high-performance cortisol biosensors. Biosens Bioelectron. 2019;131:30–6.

    CAS  PubMed  Google Scholar 

  14. Allafchian AR, Moini E, Mirahmadi-Zare SZ. Flower-like self-assembly of diphenylalanine for electrochemical human growth hormone biosensor. IEEE Sensors J. 2018;18:8979–85.

    CAS  Google Scholar 

  15. Ma Y, Liu J, Li H. Diamond-based electrochemical aptasensor realizing a femtomolar detection limit of bisphenol A. Biosens Bioelectron. 2017;92:21–5.

    CAS  PubMed  Google Scholar 

  16. Ye SJ, Ye RH, Shi YD, Qiu B, Guo LH, Huang DH, et al. Highly sensitive aptamer based on electrochemiluminescence biosensor for label-free detection of bisphenol A. Anal Bioanal Chem. 2017;409:7145–51.

    CAS  PubMed  Google Scholar 

  17. Vilian ATE, Giribabu K, Choe SR, Muruganantham R, Lee H, Roh C, et al. A spick-and-span approach to the immobilization of horseradish peroxidase on Au nanospheres incorporated with a methionine/graphene biomatrix for the determination of endocrine disruptor bisphenol A. Sens Actuator B Chem. 2017;251:804–12.

    CAS  Google Scholar 

  18. Lu MR, Wu XL, Hao CL, Xu CL, Kuang H. Leachate from instant noodle containers in Southeast Asia. Chem-Eur J. 2019;25:7023–30.

    CAS  PubMed  Google Scholar 

  19. Belkhamssa N, da Costa JP, Justino CIL, Santos PSM, Cardoso S, Duarte AC, et al. Development of an electrochemical biosensor for alkylphenol detection. Talanta. 2016;158:30–4.

    CAS  PubMed  Google Scholar 

  20. Khesuoe MP, Okumu FO, Matoetoe MC. Development of a silver functionalised polyaniline electrochemical immunosensor for polychlorinated biphenyls. Anal Methods. 2016;8:7087–95.

    CAS  Google Scholar 

  21. Wu L, Qi P, Fu X, Liu H, Li J, Wang Q, et al. A novel electrochemical PCB77-binding DNA aptamer biosensor for selective detection of PCB77. J Electroanal Chem. 2016;771:45–9.

    CAS  Google Scholar 

  22. Wu L, Lu X, Fu X, Wu L, Liu H. Gold nanoparticles dotted reduction graphene oxide nanocomposite based electrochemical aptasensor for selective, rapid, sensitive and congener-specific PCB77 detection. Sci Rep. 2017;7:5191.

    PubMed  PubMed Central  Google Scholar 

  23. Yang K, Li Z, Lv Y, Yu C, Wang P, Su X, et al. Graphene and AuNPs based electrochemical aptasensor for ultrasensitive detection of hydroxylated polychlorinated biphenyl. Anal Chim Acta. 2018;1041:94–101.

    CAS  PubMed  Google Scholar 

  24. Fan L, Wang G, Liang W, Yan W, Guo Y, Shuang S, et al. Label-free and highly selective electrochemical aptasensor for detection of PCBs based on nickel hexacyanoferrate nanoparticles/reduced graphene oxides hybrids. Biosens Bioelectron. 2019;145:111728.

    CAS  PubMed  Google Scholar 

  25. Bolat G, Yaman YT, Abaci S. Highly sensitive electrochemical assay for bisphenol A detection based on poly (CTAB)/MWCNTs modified pencil graphite electrodes. Sens Actuator B Chem. 2018;255:140–8.

    CAS  Google Scholar 

  26. Gholivand MB, Akbari A. A novel and high sensitive MWCNTs-nickel carbide/hollow fiber-pencil graphite modified electrode for in situ ultra-trace analysis of bisphenol A. J Electroanal Chem. 2018;817:9–17.

    CAS  Google Scholar 

  27. Avan AA, Filik H. CoFe2O4-MWCNTs modified screen printed carbon electrodes couples with magnetic CoFe2O4-MWCNTs based solid phase microextraction for the detection of bisphenol A. Curr Nanosci. 2018;14:199–208.

    CAS  Google Scholar 

  28. Rahaman Sk A, Shahadat M, Basu S, Shaikh ZA, Ali SW. Polyaniline/carbon nanotube-graphite modified electrode sensor for detection of bisphenol A. Ionics. 2019;25:2857–64.

    Google Scholar 

  29. Goulart LA, Cruz de Moraes F, Mascaro LH. Influence of the different carbon nanotubes on the development of electrochemical sensors for bisphenol. Mater Sci Eng C Mater Biol Appl. 2016;58:768–73.

    CAS  PubMed  Google Scholar 

  30. Goulard IA, Gonçalves R, Correa AA, Pereira EC, Mascaro LH. Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol. Microchim Acta. 2018;185:12.

    Google Scholar 

  31. Kanagavalli P, Kumar SS. Stable and sensitive amperometric determination of endocrine disruptor bisphenol A at residual metal impurities within SWCNT. Electroanal. 2018;30:445–52.

    CAS  Google Scholar 

  32. Yun Y. Electrochemical sensor for ultrasensitive determination of bisphenol A based on gold nanoparticles/beta-cyclodextrin functionalized reduced graphene oxide nanocomposite. Int J Electrochem Sci. 2016;11:2778–89.

    CAS  Google Scholar 

  33. Canevari TC, Rossi MV, Alexiou ADP. Development of an electrochemical sensor of endocrine disruptor bisphenol A by reduced graphene oxide for incorporation of spherical carbon nanoparticles. J Electroanal Chem. 2019;832:24–30.

    CAS  Google Scholar 

  34. Li CM, Zhou YL, Zhu X, Ye BX, Xu MT. Construction of a sensitive bisphenol A electrochemical sensor based on metal-organic framework/graphene composites. Int J Electrochem Sci. 2018;13:4855–67.

    CAS  Google Scholar 

  35. Qin JG, Shen J, Xu XG, Yuan Y, He GG, Chen HQ. A glassy carbon electrode modified with nitrogen-doped reduced graphene oxide and melamine for ultra-sensitive voltammetric determination of bisphenol A. Microchim Acta. 2018;185:1.

    Google Scholar 

  36. Ponnaiah SK, Periakaruppan P, Muthupandian S. Ultrasonic energy-assisted in-situ synthesis of Ru0/PANI/g-C3N4 nanocomposite: application for picomolar-level electrochemical detection of endocrine disruptor (bisphenol-A) in humans and animals. Ultrason Sonochem. 2019;58:104629.

    CAS  PubMed  Google Scholar 

  37. Pereira da Silva CT, Veregue FR, Aguiar LW, Meneguin JG, Pereira Moises M, Favaro SL, et al. AuNp@MOF composite as electrochemical material for determination of bisphenol A and its oxidation behavior study. New J Chem. 2016;40:8872–7.

    CAS  Google Scholar 

  38. Zhang YY, Yan P, Wan QJ, Wu KB, Yang NJ. Morphology-dependent electrochemistry of FeOOH nanostructures. Electrochem Commun. 2016;68:10–4.

    CAS  Google Scholar 

  39. Alves TS, Santos JS, Fiorucci AR, Arruda GJ. A new simple electrochemical method for the determination of bisphenol A using bentonite as modifier. Mater Sci Eng C Mater Biol Appl. 2019;105:110048.

    CAS  PubMed  Google Scholar 

  40. Manasa G, Mascarenhas RJ, Satpati AK, Basavaraja BM, Kumar S. An electrochemical bisphenol F sensor based on ZnO/G nano composite and CTAB surface modified carbon paste electrode architecture. Colloid Surf B Biointerfaces. 2018;170:144–151.

  41. Rather JA, Alsubhi Z, Khan I, Khudaish E, Kannan P. Graphene interface for detection of resorcinol an endocrine disruptor in solubilized ionic liquid system: electrochemical and COSMO-RS quantum studies. J Electrochem Soc. 2018;165:H57–66.

    CAS  Google Scholar 

  42. Manasa G, Bhakta AK, Mekhalif Z, Mascarenhas RJ. Voltammetric study and rapid quantification of resorcinol in hair dye and biological samples using ultrasensitive maghemite/MWCNT modified carbon paste electrode. Electroanal. 2019;31:1363–72.

    CAS  Google Scholar 

  43. Piovesan JV, Santana ER, Spinelli A. Reduced graphene oxide/gold nanoparticles nanocomposite-modified glassy carbon electrode for determination of endocrine disruptor methylparaben. J Electroanal Chem. 2018;813:163–70.

    CAS  Google Scholar 

  44. Rather JA, Al Harthi AJ, Khudaish EA, Qurashi A, Abdul Munama A, Kannan P. An electrochemical sensor based on fullerene nanorods for the detection of paraben, an endocrine disruptor. Anal Methods. 2016;8:5690–700.

    CAS  Google Scholar 

  45. Hatami E, Ashraf N, Arbab-Zavar MH. On-chip electrochemical sensing of propylparaben as an endocrine disruptor model using a disposable gold platform modified with phosphomolybdate doped polypyrrole and nanodiamond. J Electrochem Soc. 2019;166:B1379–86.

    CAS  Google Scholar 

  46. Khalid WEFW, Arip MNM, Jasmani L, Lee YH. A new sensor for methyl paraben using an electrode made of a cellulose nanocrystal–reduced graphene oxide nanocomposite. Sensors. 2019;19:2726.

    CAS  Google Scholar 

  47. Hu XB, Zhang RF. Voltammetric determination of the endocrine disruptor diethylstilbestrol by using a glassy carbon electrode modified with a composite consisting of platinum nanoparticles and multiwall carbon nanotubes. Microchim Acta. 2016;183:3069–76.

    CAS  Google Scholar 

  48. Ji L, Wang Y, Wu K, Zhang W. Simultaneous determination of environmental estrogens: diethylstilbestrol and estradiol using Cu-BTC frameworks-sensitized electrode. Talanta. 2016;159:215–21.

    CAS  PubMed  Google Scholar 

  49. Raymundo-Pereira PA, Campos AM, Vicentini FC, Janegitz BC, Mendonça CD, Furini LN, et al. Sensitive detection of estriol hormone in creek water using a sensor platform based on carbon black and silver nanoparticles. Talanta. 2017;174:652–9.

    CAS  PubMed  Google Scholar 

  50. Piovesan JV, Haddad VF, Pereira DF, Spinelli A. Magnetite nanoparticles/chitosan-modified glassy carbon electrode for nonenzymatic detection of the endocrine disruptor parathion by cathodic square-wave voltammetry. J Electroanal Chem. 2018;823:617–23.

    CAS  Google Scholar 

  51. Dadkhah S, Ziaei E, Mehdinia A, Baradaran Kayyal T, Jabbari A. A glassy carbon electrode modified with amino-functionalized graphene oxide and molecularly imprinted polymer for electrochemical sensing of bisphenol A. Microchim Acta. 2016;183:1933–41.

    CAS  Google Scholar 

  52. Güney S, Güney O. Development of an electrochemical sensor based on covalent molecular imprinting for selective determination of bisphenol A. Electroanal. 2017;29:2579–90.

    Google Scholar 

  53. Mba Ekomoa V, Branger C, Bikanga R, Florea AM, Istamboulie G, Calas-Blanchard C, et al. Detection of bisphenol A in aqueous medium by screen printed carbon electrodes incorporating electrochemical molecularly imprinted polymers. Biosens Bioelectron. 2018;112:156–61.

    Google Scholar 

  54. Yola ML, Atar N. Gold nanoparticles/two-dimensional (2D) hexagonal boron nitride nanosheets including diethylstilbestrol imprinted polymer: electrochemical detection in urine samples and validation. J Electrochem Soc. 2018;165:H897–902.

    CAS  Google Scholar 

  55. Karimian N, Stortini AM, Moretto LM, Costantino C, Sara Bogialli S, Ugo P. Electrochemosensor for trace analysis of perfluorooctanesulfonate in water based on a molecularly imprinted poly(o-phenylenediamine) polymer. ACS Sens. 2018;3:1291–8.

    CAS  PubMed  Google Scholar 

  56. Zamora-Gálvez A, Mayorga-Matinez CC, Parolo C, Pons J, Merkoçi A. Magnetic nanoparticle-molecular imprinted polymer: a new impedimetric sensor for tributyltin detection. Electrochem Commun. 2017;82:6–11.

    Google Scholar 

  57. Zheng X, Li H, Xia F, Tian D, Hua X, Qiao X, et al. An electrochemical sensor for ultrasensitive determination the polychlorinated biphenyls. Electrochim Acta. 2016;194:413–21.

    CAS  Google Scholar 

  58. Kumar S, Ghosh A. Identification of fractional order model for a voltammetric E-tongue system. Measurement. 2020;150:107064.

    Google Scholar 

Download references

Acknowledgments

Zhenzhong Guo thanks the “ChuTian Scholar” Project Award of Hubei Province (P.R. China) for its support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicole Jaffrezic-Renault or Zhenzhong Guo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Female Role Models in Analytical Chemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaffrezic-Renault, N., Kou, J., Tan, D. et al. New trends in the electrochemical detection of endocrine disruptors in complex media. Anal Bioanal Chem 412, 5913–5923 (2020). https://doi.org/10.1007/s00216-020-02516-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02516-9

Keywords

Navigation