Skip to main content
Log in

Influence of Zirconium Nitrate doping on the properties of l-Alanine crystal for nonlinear optical applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nonlinear optical single crystals of pure l-Alanine (LA) and Zirconium Nitrate-doped l-Alanine (ZNLA) were grown by low-temperature solution growth slow evaporation technique at room temperature. Single crystal and powder XRD confirms the orthorhombic structure. The average crystallite size and lattice strain are 53.21 nm and 0.0048 for LA and 62.17 nm and 0.0041 for ZNLA. FTIR reveals the presence of functional groups in the grown crystal. The optical analysis confirms the high transparency, the obtained direct and indirect transition bandgap of LA and ZNLA are 5.4 eV, 4.84 eV and 5.32 eV, 4.11 eV. The dielectric constant and dielectric loss of the gown materials are low at high frequencies. The relative second harmonic efficiency of l-Alanine and Zirconium Nitrate-doped l-Alanine are 1.15 and 1.47 times higher than that of KDP. The magnetic parameters were identified with VSM analysis. The thermal stability of LA and ZNLA single crystals was found stable up to 193.5 35 °C and 248.35 °C for ZNLA. Photoconductivity reveals that both the material LA and ZNLA have negative photoconductivity nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, T. Sasaki, J. Appl. Phys. 36, 276 (1997)

    Google Scholar 

  2. D.R. Yuan, D. Xu, N. Zang, M.G. Liu, M.H. Jiang, Chain Phys. Lett. 13, 841 (1996)

    CAS  Google Scholar 

  3. S. Sathiyanathan, M. Selvapandiyan, Mater. Sci. Pol. 37, 615 (2019)

    CAS  Google Scholar 

  4. S. Chandran, R. Paulraj, P. Ramasamy, Opt. Mater. 52, 49 (2016)

    CAS  Google Scholar 

  5. Y. Goto, A. Hayashi, Y. Kimura, M. Nakayama, J. Cryst. Growth. 108, 688 (1991)

    CAS  Google Scholar 

  6. S. Velayutham, M. Selvapandiyan, Heliyon 5, e02091 (2019)

    CAS  Google Scholar 

  7. R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, Calif, USA, 1992)

    Google Scholar 

  8. K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, Phys. B 167, 53715 (2018)

    Google Scholar 

  9. K. Omri, F. Alharbi, Appl. Phys. A 125, 696 (2019)

    Google Scholar 

  10. K. Omri, I. Najeh, L. El Mir, Ceram. Int. 42, 8940 (2016)

    CAS  Google Scholar 

  11. N. Suresh, M. Selvapandiyan, Bull. Mater. Sci. 43, 166 (2020)

    CAS  Google Scholar 

  12. K. Rajesh, B. Milton Boaz, P. PraveenKumar, J. Mater. 2013, 613092 (2013)

    Google Scholar 

  13. G. Marudhu, S. Krishnan, T. Thilak, P. Samuel, G. Vinitha, G. Pasupathi, J. Nonlinear Opt. Phys. Mater. 22, 1350043 (2013)

    Google Scholar 

  14. M. Shanmuga Sundaram, V. Vijayalakshmi, P. Dhanasekaran, O.N. Balasundaram, S. Palaniswamy, J. Cryst. Growth 506, 122 (2019)

    CAS  Google Scholar 

  15. D. Alemu Fentawa, M. Esthaku Peterb, T. Abzaa, J. Cryst. Growth 522, 1 (2019)

    Google Scholar 

  16. P.M. Wankhade, G.G. Muley, Chin. J. Phys. 55, 2181 (2017)

    CAS  Google Scholar 

  17. C. Justin Raj, S. Jerome Das, Cryst. Growth & Des. 8, 2729 (2008)

    Google Scholar 

  18. P. Malliga, A.A.J. Pragasam, J. Rus. Las. Res. 34, 346 (2013)

    CAS  Google Scholar 

  19. M. Shkir, I.S. Yahia, A.M.A. Al-Qahtani, V. Ganesh, S. Alfaify, J. Mol. Strut. 1131, 43 (2017)

    CAS  Google Scholar 

  20. T. Raghavalu, G. Rameshkumar, S. Gokul Raj, V. Mathivanan, R. Mohan, J. Cryst. Growth 307, 112 (2007)

    CAS  Google Scholar 

  21. P. Ramasamy, P. Santhana Raghavan, Crystal Growth Processes and Methods (Kru Publications, Kumbakonam, India, 1999)

    Google Scholar 

  22. J.C. Brice, Crystal Growth Process (Wiley, New York, 1986)

    Google Scholar 

  23. M. Ahlam, B. Hemaraju, A.G. Prakash, Optik 124(23), 5898 (2013)

    CAS  Google Scholar 

  24. U. Charoen-In, P. Ramasamy, P. Manyum, J. Cryst. Growth 312, 2369 (2010)

    CAS  Google Scholar 

  25. L. Misoguti, A.T. Varela, F.D. Nunes, V.S. Bagnato, F.E.A. Melo, F.J. Mendes, S.C. Zilio, Opt. Mat. 6, 147 (1996)

    Google Scholar 

  26. S. GokulRaj, G. Ramesh Kumar, Adv. Mater. Lett. 2, 176 (2011)

    Google Scholar 

  27. N. Vijayan, S. Rajasekaran, G. Bhagavannarayana, R. Ramesh Babu, R. Gopalakrishnan, M. Palanisamy, P. Ramasamy, Cryst. Growth Des. 6, 2441 (2006)

    CAS  Google Scholar 

  28. M. Lydia Caroline, R. Sankar, R.M. Indirani, S. Vasudevan, Mater. Chem. Phys. 114, 490 (2009)

    Google Scholar 

  29. K. Rajesh, A. Mani, K. Anandan, P. PraveenKumar, J. Mater. Sci. Mater. Electron. 28, 11446 (2007)

    Google Scholar 

  30. G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34 (1956)

    CAS  Google Scholar 

  31. V. Sivasubrramani, V. Mohankumar, M. Senthilpandian, P. Ramasamy, CrystalEngComm (2017). https://doi.org/10.1039/C7CE01202K

    Article  Google Scholar 

  32. J. Arumugam, M. Selvapandiyan, C. Senthilkumar, M. Srinivasan, P. Ramasamy, J. Mater. Sci. 31, 6084 (2020)

    CAS  Google Scholar 

  33. G. Bhagavannarayana, S. Parthiban, S. Meenakshisundaram, Cryst. Growth. Des. 8, 446 (2008)

    CAS  Google Scholar 

  34. T. Uma Devi, N. Lawrence, R. Ramesh Babu, K. Ramamuthi, J. Miner. Mater. Charact. Eng. 8, 755 (2009)

    Google Scholar 

  35. D. Jaikumar, S. Kalainathan, G. Bhagavanarayana, J. Cryst. Growth 312, 120 (2009)

    CAS  Google Scholar 

  36. G.K. Priya Merline, M. Chitra, J. Mater. Sci. 29, 5509 (2018)

    CAS  Google Scholar 

  37. M. Anbuchezhiyan, A. Arputhalatha, S. Ponnusamy, K.S. Suresh Babu, Photon. Lett. Pol. 7, 44 (2015)

    CAS  Google Scholar 

  38. P. Praveen Kumar, V. Manivannan, S. Tamilselvan, S. Senthil, V.A. Raj, P. Sagayaraj, J. Madhavan, Opt. Commun. 281, 2989 (2008)

    Google Scholar 

  39. B.S. Benila, K.C. Bright, S. Maey Delphine, R. Shabu, J. Magn. Magn. Mater. 426, 390 (2017)

    CAS  Google Scholar 

  40. N. Kanagathara, G. Anbalagan, Int. J. Opt. 2012, 1 (2012)

    Google Scholar 

  41. S. Sagadevan, P. Murugasen, Int. J. Mater. Sci. Eng. 3, 159 (2015)

    Google Scholar 

  42. K. Nivetha, W. Madhuri, Opt. Laser. Technol. 109, 496 (2019)

    CAS  Google Scholar 

  43. S. Mukherjee, V. Sudarsan, R.K. Vasta, A.K. Tyagi, J. Lumin. 129, 69 (2009)

    CAS  Google Scholar 

  44. M.K. Sangeetha, M. Mariappan, G. Madhurambal, S.C. Mojumdar, J. Therm. Anal. Calorim. 112, 1059 (2013)

    CAS  Google Scholar 

  45. M. Prakash, D. Geetha, M.L. Caroline, P.S. Ramesh, Spectrosc. Chem. Part A 83, 461 (2011)

    CAS  Google Scholar 

  46. S. Natarajan, S.A. Martin Britto, E. Ramachandran, Cryst. Growth Des. 6, 137 (2006)

    CAS  Google Scholar 

  47. D.P. Ketan, J.D. Dipak, J.J. Mihir, Mod. Phys. Lett. B 23, 1589 (2009)

    Google Scholar 

  48. T. Thilak, M. Basheer Ahamed, G. Marudhu, G. Vinitha, Arab. J. Chem. 9, 676 (2016)

    CAS  Google Scholar 

  49. T. Ananthi, S.M. Delphine, A.W. Almusallam, Recent Res. Sci. Technol. 3, 32 (2011)

    CAS  Google Scholar 

  50. P. Baskaran, M. Vimalan, P. Anandan, G. Bakiyaraj, K. Kirubavathi, K. Selvaraju, J. Taibah Univ. Sci. 11, 11 (2017)

    Google Scholar 

  51. J. Jeyaram, K. Varadharajan, B. Singaram, R. Rajendhran, J. Sci. 2, 445 (2017)

    Google Scholar 

  52. P. Baskaran, M. Vimalan, P. Anandan, G. Bakiyaraj, K. Kirubavathi, K. Selvaraju, J. Taibah Univ. Sci. 11, 11 (2018)

    Google Scholar 

  53. K. Pandurangan, S. Suresh, J. Mater. 2014, 1 (2014)

    Google Scholar 

  54. C. Karnan, A.R. Prabakaran, M. Prabhaharan, G. Vinitha, J. Electron Mater. 48, 7915 (2019)

    CAS  Google Scholar 

  55. F. Akhtar, J. Podder, Res. J. Phys. 6, 31 (2012)

    Google Scholar 

Download references

Acknowledgements

Authors thank Head, Department of Physics, Alagappa University, Karaikudi for extending the characterization facilities of Powder XRD and also thank The Head, SAIF, IIT, Chennai for UV–visible analysis and VSM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Selvapandiyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, N., Selvapandiyan, M. Influence of Zirconium Nitrate doping on the properties of l-Alanine crystal for nonlinear optical applications. J Mater Sci: Mater Electron 31, 16737–16745 (2020). https://doi.org/10.1007/s10854-020-04229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04229-2

Navigation