Skip to main content

Advertisement

Log in

Quantitative sensory testing to evaluate and compare the results after epidural injection and simple discectomy, in patients with radiculopathy secondary to lumbar disc herniation

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

The objective assessment of the radiculopathy secondary to lumbar disc herniation is essential to optimize treatment. The quantitative sensory test (QST) is a useful tool to evaluate somatosensory nerves. The aim of our study is quantifying by QST the alterations of patients treated by epidural injections (EI) or surgical lumbar decompression (LD). A prospective, cohort study has done in Hospital Universitario Rio Hortega, Valladolid, Spain, between January 2014 and December 2016.The study includes 74 patients (40 men) who underwent EI (50) or LD (24) with lumbar disc herniation and treated by EI or LD. Participants underwent a brief battery of QST at baseline and after 1, 3 and 6 months of follow-up. QST threshold were measured in three series of five warm and cold stimuli (cold detection threshold, warm detection threshold, cold pain threshold, heat pain threshold) bilateral. Additionally, pain assessment (Visual Analogue Scale) and neurological examination was performed. Thermal thresholds were analysed and compared. In the EI group, warm detection threshold (WDT) measurements were significantly lower after 3 and 6 months of follow-up (40.44 ± 3.42°C vs. 38.30 ± 3.73°C and 37.48 ± 4.58°C respectively, p = 0.031 and p = 0.043). LD group showed lower WDT measurements at 1, 3 and 6 months of follow up (40.20 ± 2.97°C vs., 37.98 ± 2.04°C, 37.43 ± 3.80°C and 36.55 ± 2.77°C respectively, p = 0.049, p = 0.032 and p = 0.024) and lower heat pain threshold (HPT) levels after 3 and 6 months of follow-up (48.75 ± 1.37°C vs. 43.26 ± 0.60°C and 42.06 ± 1.37°C respectively, p = 0.037 and p = 0.021). QST explorations were compared between both groups. At 1-month follow-up only the WDT parameter was different, higher in EI group (40.98 ± 4.04°C vs. 37.98 ± 2.04°C, p = 0.043). There were no differences in any parameter measured by QST after 3 and 6-months follow-up between both groups. Epidural injection should be considered the first-step of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bhatia A, Flamer D, Shah PS, Cohen SP. Transforaminal epidural steroid injections for treating lumbosacral radicular pain from herniated intervertebral discs: a systematic review and meta-analysis. Anesth Analg. 2016;122:857–70.

    CAS  PubMed  Google Scholar 

  2. Bicket MB, Hurley RW, Moon JY, Brummett CM, Hanling S, Huntoon MA, Van Zundert J, Cohen SP. The development and validation of a quality assessment and rating of technique for injections of the spine (AQUARIUS). Reg Anesth Pain Med. 2016;41:80–5.

    CAS  PubMed  Google Scholar 

  3. De Palma L, Di Lazzaro A. Clinical and pathogenetic observations on the lumbar herniated disk syndrome in the aged. Arch Putti Chir Organi Mov. 1978;29:139–47.

    PubMed  Google Scholar 

  4. Jordan J, Konstantinou K. O’Dowd herniated lumbar disc. BMJ Clin Evid. 2011;28:2011.

    Google Scholar 

  5. Kaye AD, Manchikanti L, Abdi S, Atluri S, Bakshi S, Benyamin R, Boswell MV, Buenaventura R, Candido KD, Cordner HJ, Datta S, Doulatram G, Gharibo CG, Grami V, Gupta S, Jha S, Kaplan ED, Mala Y, Mann DP, Nampiaparampil DE, Racz G, Raj P, Rana MV, Sharma ML, Singh V, Soin A, Staats PS, Vallejo R, Wargo BW, Hirsch JA. Efficacy of epidural injections in managing chronic spinal pain: a best evidence synthesis. Pain Phys. 2015;18:E939–1004.

    Google Scholar 

  6. Hurtig IM, Raak RI, Kendall SA, Gerdle B, Wahren LK. Quantitative sensory testing in fibromyalgia patients and in healthy subjects: identification of subgroups. Clin J Pain. 2001;17:316–22.

    CAS  PubMed  Google Scholar 

  7. Dyck PJ, Zimmerman I, Gillen DA, Johnson D, Karnes JL, O’Brien PC. Cool, warm, and heat-pain detection thresholds: testing methods and inferences about anatomic distribution of receptors. Neurology. 1993;43:1500–8.

    CAS  PubMed  Google Scholar 

  8. Samuelsson L, Lundin A. Thermal quantitative sensory testing in lumbar disc herniation. Eur Spine J. 2002;11:71–5.

    CAS  PubMed  Google Scholar 

  9. Verdugo R, Ochoa JL. Quantitative somatosensory thermotest. A key method for functional evaluation of small calibre afferent channels. Brain. 1992;115:893–913.

    PubMed  Google Scholar 

  10. Yarnitsky D, Ochoa JL. Warm and cold specific somatosensory systems. Psychophysical thresholds, reaction times and peripheral conduction velocities. Brain. 1991;114:1819–26.

    PubMed  Google Scholar 

  11. Moloney NA, Hall TM, Doody CM. Reliability of thermal quantitative sensory testing: a systematic review. J Rehabil Res Dev. 2012;49:191–207.

    PubMed  Google Scholar 

  12. Rolke R, Baron R, Maier C, Tölle TR, Treede RD, Beyer A, Binder A, Birmaumer N, Birklein F, Bötefür IC, Braune S, Flor H, Huge V, Klug R, Landwehrmeyer GB, Magerl W, Maihöfner C, Rolko C, Schaub C, Scherens A, Sprenger T, Valet M, Wasserka B. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standarized protocol and reference values. Pain. 2006;123:231–43.

    CAS  Google Scholar 

  13. Rolke R, Magerl W, Campbell KA, Schalber C, Caspari S, Birklein F, Treede RD. Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain. 2006;10:77–88.

    CAS  PubMed  Google Scholar 

  14. Shukla G, Bhatia M, Behari M. Quantitative thermal sensory testing-value of testing for both cold and warm sensation detection in evaluation of small fiber neuropathy. Clin Neurol Neurosurg. 2005;107:486–90.

    PubMed  Google Scholar 

  15. Backonja M, Attal N, Baron R, Bouhassira D, Drangholt M, Dyck PJ, Edwards RR, Freeman R, Gracely R, Haanpää MH, Hansson P, Hatem SM, Krumova EK, Jensen TS, Maier C, Mick G, Rice AS, Rolke R, Treede RD, Serra J, Toelle T, Tugnoli V, Walk D, Walalce MS, Ware M, Yarnitsky D, Ziegler D. Value of quantitative sensory testing in neurological and pain disorders: neupsig consensus. Pain. 2013;154:1807–19.

    PubMed  Google Scholar 

  16. Baron R. Peripheral neuropathic pain: from mechanisms to symptoms. Clin J Pain. 2000;16(2):S12–20.

    CAS  PubMed  Google Scholar 

  17. Coghill RC, Yarnitsky D. Healthy and normal? The need for clear reporting and flexible criteria for defining control participants in quantitative sensory testing studies. Pain. 2015;156:2117–8.

    PubMed  Google Scholar 

  18. Haanpää M, Attal N, Backonja M, Baron R, Bennett M, Bouhassira D, Cruccu G, Hansson P, Haythornthwaite JA, Iannetti GD, Jensen TS, Kauppila T, Nurmikko TJ, Rice AS, Rowbotham M, Serra J, Sommer C, Smith BH, Treede RD. NeuPSIG guidelines on neuropathic pain assessment. Pain. 2011;152:14–27.

    PubMed  Google Scholar 

  19. Konopka KH, Harbers M, Houghton A, Kortekaas R, Van Vliet A, Timmerman W, den Boer JA, Struys MM, van Wijhe M. Bilateral sensory abnormalities in patients with unilateral neuropathic pain: a quantitative sensory testing (QST) study. PLoS ONE. 2012;7:e37524.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zub LW, Szymczyk M, Pokryszko-Dragan A, Bilińska M. Evaluation of pain in patients with lumbar disc surgery using VAS scale and quantitative sensory testing. Adv Clin Exp Med. 2013;22:411–9.

    PubMed  Google Scholar 

  21. Goupille P, Jayson MIV, Valt J-P, Freemont AJ. The role of inflammation in disk herniation-associated radiculopathy. Semin Arthritis Rheum. 1998;28:60–71.

    CAS  PubMed  Google Scholar 

  22. Lundborg G, Dahlin B. Anatomy, function and pathophysiology of peripheral nerves and nerve compression. Hand Clin. 1996;12:185–93.

    CAS  PubMed  Google Scholar 

  23. Schiff E, Eisenberg E. MD can quantitative sensory testing predict the outcome of epidural steroid injections in sciatica? a preliminary study. Anesth Analg. 2003;97:828–32.

    PubMed  Google Scholar 

  24. Maher DP, Ding W, Singh S, Opalacz A, Fishman C, Houghton M, Ahmed S, Chen L, Mao J, Zhang Y. Thermal QST phenotypes associated with response to lumbar epidural steroid injections: a pilot study. Pain Med. 2017;18:1455–63.

    PubMed  PubMed Central  Google Scholar 

  25. Manchikanti L, Candido KD, Singh V, Gharibo CG, Boswell MV, Benyamin RM, Falco FJ, Grider JS, Diwan S, Hirsch JA. Epidural steroid warning controversy still dogging FDA. Pain Physician. 2014;17:E451–74.

    PubMed  Google Scholar 

  26. Imoto K, Takebayashi T, Kanaya K, Kawaguchi S, Katahira G, Yamashita T. Quantitative analysis of sensory functions after lumbar discectomy using current perception threshold testing. Eur Spine J. 2007;16:971–5.

    PubMed  PubMed Central  Google Scholar 

  27. Nygaard OP, Kloster R, Solberg T, Mellgren SI. Recovery of function in adjacent nerve roots after surgery for lumbar disc herniation: use of quantitative sensory testing in the exploration of different populations of nerve fibers. J Spine Disord. 2000;13:427–31.

    CAS  Google Scholar 

  28. Knutti IA, Sutter MR, Opsommer E. Test-retest reliability of thermal quantitative sensory testing on two sites within the L5 Dermatome of the lumbar spine and lower extremity. Neurosci Lett. 2014;579:157–62.

    CAS  PubMed  Google Scholar 

  29. Lindbäck Y, Tropp H, Enthoven P, Gerdle B, Abbott A, Öberq B B. Altered somatosensory profile according to quantitative sensory testing in patients with degenerative lumbar spine disorders scheduled for surgery. BMC Musculoskelet Disord. 2017;18(1):264.

    PubMed  PubMed Central  Google Scholar 

  30. Tschugg A, Löscher WN, Lener S, Hartmann S, Wildauer M, Neururer S, Thomé C. The value of quantitative sensory testing in spine research. Neurosurg Rev. 2017;40:411–8.

    PubMed  Google Scholar 

  31. Treede RD. The role of quantitative sensory testing in the prediction of chronic pain. Pain. 2019;160(suppl 1):S66–9.

    PubMed  Google Scholar 

  32. Guergovas S, Dufour A. Thermal sensitivity in the elderly: a review. Ageing Res Rev. 2011;10:80–92.

    Google Scholar 

  33. Vuilleumier PH, Biurrun Manresa JA, Ghamri Y, Mlekusch S, Siegenthaler A, Arendt-Nielsen L, et al. Reliability of quantitative sensory tests in a low back pain population. Reg Anesth Pain Med. 2015;40:665–73.

    PubMed  Google Scholar 

  34. Zwart JA, Sand T, Unsgaard G. Warm and cold sensory thresholds in patients with unilateral sciatica: c fibers are more severely affected than A-delta fibers. Acta Neurol Scand. 1998;97:41–5.

    CAS  PubMed  Google Scholar 

  35. Marcuzzi A, Dean CM, Wrigley PJ, Chakiath RJ, Hush JM. Prognostic value of quantitative sensory testing in low back pain: a systematic review of the literature. J Pain Res. 2016;9:599–607.

    PubMed  PubMed Central  Google Scholar 

  36. Sasso RC, Macadaeg K, Nordmann D, Smith M. Selective nerve root injections can predict surgical outcome for lumbar and cervical radiculopathy: comparison to magnetic resonance. J Spinal Disord Tech. 2005;18:471–8.

    PubMed  Google Scholar 

  37. Yamashita T, Kanaya K, Sekine M, Takebayashi T, Kawaguchi S, Katahira G. A quantitative analysis of sensory function in lumbar radiculopathy using current perception threshold testing. Spine. 2002;27:1567–70.

    PubMed  Google Scholar 

  38. Gierthmühlen J, Enax-Krumova EK, Attal N, Bouhassira D, Cruccu G, Finnerup NB, Haanpää M, Hansson P, Jensen TS, Freynhagen R, Kennedy JD, Mainka T, Rice AS, Segerdahl M, Sindrup SH, Serra J, Tölle T, Treede RD, Baron R, Maier C. Who is healthy? aspects to consider when including healthy volunteers in QST-based studies—a consensus statement by the EUROPAIN and NEUROPAIN consortia. Pain. 2015;156:2203–11.

    PubMed  Google Scholar 

  39. Shy ME, Frohman EM, So YT, Arezzo JC, Cormblath DR, Giuliani MJ, Kincaid JC, Ochoa JL, Parry GJ, Weimer LH. Quantitative sensory testing: report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology. Neurology. 2003;60:898–904.

    CAS  PubMed  Google Scholar 

  40. Uddin Z. The power function of the ten test for measuring neural sensitivity in clinical pain or sensory abnormalities. Singap Health Proc. 2017;26:62–5.

    Google Scholar 

  41. Uddin Z, MacDermid JC. Quantitative sensory testing in chronic musculoskeletal pain. Pain Med. 2016;17:1694–703.

    PubMed  Google Scholar 

  42. Uddin Z, MacDermid JC, Galea V, Gross AR, Pierrynowski MR. The current perception threshold test differentiates categories of mechanical neck disorder. J Orthop Sports Phys Ther. 2014;44:532–40.

    PubMed  Google Scholar 

  43. Uddin Z, MacDermid JC, Moro J, Galea V, Gross AR. Psychophysical and patient factors as determinants of pain, function and health status in shoulder disorders. Open Orthop J. 2016;10:466.

    PubMed  PubMed Central  Google Scholar 

  44. Uddin Z, MacDermid JC, Woodhouse LJ, Triano JJ, Galea V, Gross AR. The effect of pressure pain sensitivity and patient factors on self-reported pain-disability in patient with chronic neck pain. Open Orthop J. 2014;8:323–30.

    Google Scholar 

  45. Uddin Z, Woznowski-Vu A, Flegg D, Aternali A, Wickens R, Wideman TH. Evaluating the novel added value of neurophysiological pain sensitivity within the fear-avoidance model of pain. Eur J Pain. 2019;23:957–72.

    PubMed  Google Scholar 

  46. Vollert J, Mainka T, Baron R, Enax-Krumova EK, Hüllermann P, Maier C, et al. Quality assurance for QST-laboratories: development and validation of an automated evaluation tool for the analysis of declared healthy samples. Pain. 2015;156:2423–30.

    PubMed  Google Scholar 

  47. Müller M, Limacher A, Agten CA, Treichel F, Heini P, Seidel U, Andersen OK, Arendt-Nielsen L, Jüni P, Curatolo M. Can quantitative sensory tests predict failed back surgery? Eur J Anesth. 2019;36:695–704.

    Google Scholar 

Download references

Funding

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar Aldecoa.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Saiz, I., San Norberto, E.M., Tamayo, E. et al. Quantitative sensory testing to evaluate and compare the results after epidural injection and simple discectomy, in patients with radiculopathy secondary to lumbar disc herniation. J Clin Monit Comput 34, 1095–1104 (2020). https://doi.org/10.1007/s10877-019-00395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-019-00395-9

Keywords

Navigation