Skip to main content
Log in

Rheological properties of oil paints and their flow instabilities in blade coating

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Painters express their ideas and emotions by making use of oil paints, tools, and painting techniques. Their artworks appear on the surface, which depend on colors, tools, and the sensuous touch of the painters. From the scientific viewpoint, it is determined by the rheological properties of oil paints and their flow behavior while the external force is applied to oil paints. It means that the artists know through learning or by instinct that the oil paints have different rheological properties according to the color, and that various surfaces can be generated by changing the operating conditions. In this study, we measured the rheological properties of oil paints and investigated their flow behavior when the flow was applied. Flow instability was visualized, and the coating window was analyzed, which was supposed to mimic the painting process of the artists. We could understand that oil paints are similar in ingredients, rheological properties, and flow characteristics to industrial coating process. One important thing to note is that the painting is a process to pursue heterogeneity that is generated by the touches of the artists, while the coating process in industry is a process to pursue homogeneity so as to get defect-free surface with high productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Bautista F, Fernández VVA, Macías ER, Pérez-López JH, Escalante JI, Puig JE, Manero O (2012) Experimental evidence of the critical phenomenon and shear banding flow in polymer-like micellar solutions. J Non-Newton Fluid Mech 177–178:89–96

    Article  Google Scholar 

  • Beaumont J, Louvet N, Divoux T, Fardin M-A, Bodiguel H, Lerouge S, Manneville S, Colin A (2013) Turbulent flows in highly elastic wormlike micelles. Soft Matter 9:735–749

    Article  CAS  Google Scholar 

  • Berry JR (1965) Low shear viscometry in relation to brushing. Rheol Acta 4:262–265

    Article  Google Scholar 

  • Boukany PE, Wang S-Q (2007) A correlation between velocity profile and molecular weight distribution in sheared entangled polymer solutions. J Rheol 51:217–233

    Article  CAS  Google Scholar 

  • Bullett TR (1965) Rheology in painting. Rheol Acta 4:258–260

    Article  Google Scholar 

  • Buscall R, McGowan JI, Morton-Jones AJ (1993) The rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slip. J Rheol 37:621–641

    Article  CAS  Google Scholar 

  • Carvalho MS, Scriven LE (1999) Three-dimensional stability analysis of free surface flows: application to forward deformable roll coating. J Comput Phys 151:534–562

    Article  CAS  Google Scholar 

  • Clarke A (2002) Coating on a rough surface. AIChE J 48:2149–2156

    Article  CAS  Google Scholar 

  • Cohu O, Magnin A (1995) Rheometry of paints with regard to roll coating process. J Rheol 39:767–785

    Article  CAS  Google Scholar 

  • Cohu O, Magnin A (1997) Forward roll coating of Newtonian fluids with deformable rolls: an experimental investigation. Chem Eng Sci 52:1339–1347

    Article  CAS  Google Scholar 

  • Coussot P, Leonov AI, Piau JM (1993) Rheology of concentrated dispersed systems in a low molecular weight matrix. J Non-Newton Fluid Mech 46:179–217

    Article  CAS  Google Scholar 

  • Coussot P, Nguyen QD, Huynh HT, Bonn D (2002a) Avalanche behavior in yield stress fluids. Phys Rev Lett 88:175501

    Article  Google Scholar 

  • Coussot P, Raynaud JS, Bertrand F, Moucheront P, Guilbaud JP, Huynh HT, Jarny S, Lesueur D (2002b) Coexistence of liquid and solid phases in flowing soft-glassy materials. Phys Rev Lett 88:218301

    Article  CAS  Google Scholar 

  • Coyle DJ (1984) The fluid mechanics of roll coating: steady flows, stability, and rheology. Dissertation, University of Minnesota

  • Coyle DJ (1997) Knife and roll coating. In: Kisler SF, Schweizer PM (eds) Liquid film coating, 1st edn. Chapman & Hall, London, pp 539–571

    Chapter  Google Scholar 

  • Coyle DJ, Macosko CW, Scriven LE (1990a) The fluid dynamics of reverse roll coating. AIChE J 36:161–174

    Article  CAS  Google Scholar 

  • Coyle DJ, Macosko CW, Scriven LE (1990b) Reverse roll coating of non-Newtonian liquids. J Rheol 34:615–636

    Article  Google Scholar 

  • Davard F, Dupuis D (2000) Flow visualisation experiments in a blade coating process. J Non-Newton Fluid Mech 93:17–28

    Article  CAS  Google Scholar 

  • Durst F, Wagner H-G (1997) Slot coating. In: Kisler SF, Schweizer PM (eds) Liquid film coating, 1st edn. Chapman & Hall, London, pp 401–426

    Chapter  Google Scholar 

  • Fardin MA, Divoux T, Guedeau-Boudeville MA, Buchet-Maulien I, Browaeys J, McKinley GH, Manneville S, Lerouge S (2012) Shear-banding in surfactant wormlike micelles: elastic instabilities and wall slip. Soft Matter 8:2535–2553

    Article  CAS  Google Scholar 

  • Fielding SM (2005) Linear instability of planar shear banded flow. Phys Rev Lett 95:134501

    Article  CAS  Google Scholar 

  • Gates ID (1999) Slot coating flows: feasibility, quality, vol 1. Dissertation, University of Minnesota

  • Han SK, Shin DM, Park HY, Jung HW, Hyun JC (2009) Effect of viscoelasticity on dynamics and stability in roll coatings. Eur Phys J Spec Top 166:107–110

    Article  Google Scholar 

  • He Q, Yu W, Wu Y, Zhou C (2012) Shear induced phase inversion of dilute smectic liquid crystal/polymer blends. Soft Matter 8:2992–3001

    Article  CAS  Google Scholar 

  • Holmes WM, Callaghan PT, Vlassopoulos D, Roovers J (2004) Shear banding phenomena in ultrasoft colloidal glasses. J Rheol 48:1085–1102

    Article  CAS  Google Scholar 

  • Huang N, Ovarlez G, Bertrand F, Rodts S, Coussot P, Bonn D (2005) Flow of wet granular materials. Phys Rev Lett 94:028301

    Article  CAS  Google Scholar 

  • Hyun K, Nam JG, Wilhelm M, Ahn KH, Lee SJ (2006) Large amplitude oscillatory shear behavior of PEO-PPO-PEO triblock copolymer solutions. Rheol Acta 45:239–249

    Article  CAS  Google Scholar 

  • Hyun K, Baik ES, Ahn KH, Lee SJ, Sugimoto M, Koyama K (2007) Fourier-transform rheology under medium amplitude oscillatory shear for linear and branched polymer melts. J Rheol 51:1319–1342

    Article  CAS  Google Scholar 

  • Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear test: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753

    Article  CAS  Google Scholar 

  • Ianni F, Di Leonardo R, Gentilini S, Ruocco G (2008) Shear-banding phenomena and dynamical behavior in a Laponite suspension. Phys Rev E 77:031406

    Article  CAS  Google Scholar 

  • Kim S, Kim JH, Ahn KH, Lee SJ (2009) Rheological perspectives of industrial coating process. Korea-Aust Rheol J 21:83–89

    Google Scholar 

  • Larson RG (1992) Instabilities in viscoelastic flows. Rheol Acta 31:213–263

    Article  CAS  Google Scholar 

  • Le Grand A, Petekidis G (2008) Effects of particle softness on the rheology and yielding of colloidal glasses. Rheol Acta 47:579–590

    Article  Google Scholar 

  • Lee G-W, Ryu JH, Han W, Ahn KH, Oh SM (2010) Effect of slurry preparation process on electrochemical performances of LiCoO2 composite electrode. J Power Sources 195:6049–6054

    Article  CAS  Google Scholar 

  • Lettinga MP, Manneville S (2009) Competition between shear banding and wall slip in wormlike micelles. Phys Rev Lett 103:248302

    Article  Google Scholar 

  • Letwimolnun W, Vergnes B, Ausias G, Carreau PJ (2007) Stress overshoots of organoclay nanocomposites in transient shear flow. J Non-Newton Fluid Mech 141:167–179

    Article  CAS  Google Scholar 

  • Lin SP (1981) Stability of a viscous liquid curtain. J Fluid Mech 104:111–118

    Article  Google Scholar 

  • Liu Z, Su Y, Varahramyan K (2005) Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers. Thin Solid Films 478:275–279

    Article  CAS  Google Scholar 

  • Manneville S, Colin A, Waton G, Schosseler F (2007) Wall slip, shear banding, and instability in the flow of a triblock copolymer micellar solution. Phys Rev E 75:061502

    Article  Google Scholar 

  • Marston JO, Decent SP, Simmons MJH (2006a) Hysteresis and non-uniqueness in the speed of the onset of instability in curtain coating. J Fluid Mech 569:349–363

    Article  Google Scholar 

  • Marston JO, Simmons MJH, Decent SP, Kirk SP (2006b) Influence of the flow field in curtain coating onto a prewet substrate. Phys Fluids 18:112102

    Article  Google Scholar 

  • Mell CC, Finn SR (1965) Forces exerted during the brushing of a paint. Rheol Acta 4:260–261

    Article  Google Scholar 

  • Mysels KJ (1981) Visual art: the role of capillarity and rheological properties in painting. Leonardo 14:22–27

    Article  Google Scholar 

  • Ovarlez G, Bertrand F, Rodts S (2006) Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging. J Rheol 50:259–292

    Article  CAS  Google Scholar 

  • Ovarlez G, Rodts S, Chateau X, Coussot P (2009) Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheol Acta 48:831–844

    Article  CAS  Google Scholar 

  • Pearson JRA (1960) The instability of uniform viscous flow under rollers and spreaders. J Fluid Mech 7:481–500

    Article  Google Scholar 

  • Pignon F, Magnin A, Piau J-M (1996) Thixotropic colloidal suspensions and flow curves with minimum: identification of flow regimes and rheometric consequences. J Rheol 40:573–587

    Article  CAS  Google Scholar 

  • Ragouilliaux A, Herzhaft B, Bertrand F, Coussot P (2006) Flow instability and shear localization in a drilling mud. Rheol Acta 46:261–271

    Article  CAS  Google Scholar 

  • Rogers SA, Vlassopoulos D, Callaghan PT (2008) Aging, yielding, and shear banding in soft colloidal glasses. Phys Rev Lett 100:128304

    Article  CAS  Google Scholar 

  • Romero OJ, Scriven LE, Carvalho MS (2006) Slot coating of mildly viscoelastic liquids. J Non-Newton Fluid Mech 138:63–75

    Article  CAS  Google Scholar 

  • Ruschak KJ (1985) Coating flows. Ann Rev Fluid Mech 17:65–89

    Article  Google Scholar 

  • Scott Blair GW (1969) Rheology and painting. Leonardo 2:51–53

    Article  Google Scholar 

  • Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34:1864–1872

    Article  CAS  Google Scholar 

  • Soules DA, Fernando RH, Glass JE (1988) Dynamic uniaxial extensional viscosity (DUEV) effects in roll application I. Rib and web growth in commercial coating. J Rheol 32:181–198

    Article  CAS  Google Scholar 

  • Sullivan TM, Middleman S (1986) Film thickness in blade coating of viscous and viscoelastic liquids. J Non-Newton Fluid Mech 21:13–38

    Article  CAS  Google Scholar 

  • Sung JH, Lee JY, Kim S, Suh J, Kim J, Ahn KH, Lee SJ (2010) Effect of particle size in Ni screen printing paste of incompatible polymer binders. J Mater Sci 45:2466–2473

    Article  CAS  Google Scholar 

  • Triantafillopoulos N, Grön J, Luostarinen I, Paloviita P (2004a) Operational issues in high-speed curtain coating of paper, Part 1: the principles of curtain coating. Tappi J 3:6–10

    CAS  Google Scholar 

  • Triantafillopoulos N, Grön J, Luostarinen I, Paloviita P (2004b) Operational issues in high-speed curtain coating of paper, Part 2: curtain coating of lightweight coated paper. Tappi J 3:11–16

    CAS  Google Scholar 

  • Uhlherr PHT, Guo J, Tiu C, Zhang X-M, Zhou JZ-Q, Fang T-N (2005) The shear-induced solid–liquid transition in yield stress materials with chemically different structures. J Non-Newton Fluid Mech 125:101–119

    Article  CAS  Google Scholar 

  • Walls HJ, Brett Caines S, Sanchez AM, Khan SA (2003) Yield stress and wall slip phenomena in colloidal silica gels. J Rheol 47:847–868

    Article  CAS  Google Scholar 

  • Wang S-Q (2007) A coherent description of nonlinear flow behavior of entangled polymers as related to processing and numerical simulations. Macromol Mater Eng 292:15–22

    Article  CAS  Google Scholar 

  • Wilhelm M (2002) Fourier-transform rheology. Macromol Mater Eng 287:83–105

    Article  CAS  Google Scholar 

  • Yang M-C, Scriven LE, Macosko CW (1986) Some rheological measurements on magnetic iron oxide suspensions in silicon oil. J Rheol 30:1015–1029

    Article  CAS  Google Scholar 

  • Zeng W, Wu H, Zhang C, Huang F, Peng J, Yang W, Cao Y (2007) Polymer light-emitting diodes with cathodes printed from conducting Ag paste. Adv Mater 19:810–814

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea grant (no. 20100026139) funded by the Korean government (MEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Hyun Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, S., Ahn, K.H. Rheological properties of oil paints and their flow instabilities in blade coating. Rheol Acta 52, 643–659 (2013). https://doi.org/10.1007/s00397-013-0717-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0717-3

Keywords

Navigation