Skip to main content
Log in

Novel highly hydrophilic organic/inorganic composites based on polyacrylamide and silica: synthesis strategy, structure and swelling behaviour

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of novel hydrophilic organic-inorganic composites (OIC) with enhanced sorption properties were synthesized by one-pot synthesis technique - in situ radical polymerization of acrylamide (AM) and hydrolytic polycondensation of sodium silicate in aqueous solution. Formation of mixed organic-inorganic polyacrylamide (PAM)/SiO2 phase has been detected by FTIR spectroscopy (appropriate changes in H-bonds network structure of PAM) and DSC analysis (dramatic decreasing glass temperature of PAM). Additive decreasing of mass loss of OIC with increasing of SiO2 content is explained by the increasing of PAM-content in mixed PAM/SiO2 phase on the interface of organic and inorganic phases. The formation of SiO2 aggregates with different dispersity, which, in their turn, form submicron structures in composites with SiO2 content more than 15 wt.% was observed from SEM data. Structurization of OIC resulted in the enhanced sorption characteristics (swelling capacity of the OIC reaches 2730%). Sorption kinetic curves obtained both in isothermic and isochoric regimes demonstrate that the swelling process of OIC is limited by relaxation of PAM chains and can be described by sorption mechanism of Type II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gon M, Tanaka K, Chujo Y (2017) Creative synthesis of organic-inorganic molecular hybrid materials. Bull Chem Soc Jpn 90:463–474

    Article  CAS  Google Scholar 

  2. Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J MaterSci 51:271–310

    Article  CAS  Google Scholar 

  3. Boonmahitthisud A, Nakajima L, Nguyen KD, Kobayashi T (2016) Composite effect of silica nanoparticle on the mechanical properties of cellulose-based hydrogels derived from cottonseed hulls. J Appl Polym Sci 134:44557–44569

    Google Scholar 

  4. Ershad-Langroudi A, Rabiee A (2012) A novel acrylamide-anatase hybrid nanocomposites. J Polym Res 19:9970–9981

    Article  Google Scholar 

  5. Tong X, Zheng J, Lu Y, Zhang Z, Cheng H (2007) Swelling and mechanical behaviors of carbon nanotube/poly(vinyl alcohol) hybrid hydrogels. Mater Lett 61:1704–1706

    Article  CAS  Google Scholar 

  6. Lee WF, Chen YJ (2001) Studies on preparation and swelling properties of the N-isopropylacrylamide/chitosan semi-IPN and IPN hydrogels. J Appl Polym Sci 82:2487–2496

    Article  CAS  Google Scholar 

  7. Yin L, Fei L, Cui F, Tang C, Yin C (2007) Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials 28:1258–1266

    Article  CAS  Google Scholar 

  8. Fei X, Xu S, Feng S, Lin J, Lin J, Shi X, Wang J (2011) Mechanically strengthened double network composite hydrogels with high water content: a preliminary study. J Polym Res 18:1131–1136

    Article  CAS  Google Scholar 

  9. Chen P, Xu S, Wu R, Wang J, Gu R, Du J (2013) A transparent Laponite polymer nanocomposite hydrogel synthesis via in-situ copolymerization of two ionic monomers. Appl Clay Sci 72:196–200

    Article  CAS  Google Scholar 

  10. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay. Macromolecules 36:5732–5741

    Article  CAS  Google Scholar 

  11. Li H-J, Jiang H, Haraguchi K (2018) Ultrastiff, thermoresponsive nanocomposite hydrogels composed of ternary polymer–clay–silica networks. Macromolecules 51:529–539

    Article  CAS  Google Scholar 

  12. Du J, Xu S, Feng S, Yu L, Wang J, Liu Y (2016) Tough dual nanocomposite hydrogels with inorganic hybrid crosslinking. Soft Matter 12:1649–1654

    Article  CAS  Google Scholar 

  13. Loos W, Verbrugghe S, Goethals EJ, Du Prez FE, Bakeeva IV, Zubov VP (2003) Thermo-responsive organic/inorganic hybrid hydrogels based on poly(N-vinylcaprolactam). Macromol Chem Phys 204:98–103

    Article  CAS  Google Scholar 

  14. Milimouk I, Hecht AM, Beysens D, Geissler E (2001) Swelling of neutralized polyelectrolyte gels. Polymer 42:487–494

    Article  CAS  Google Scholar 

  15. Dubrovskii SA, Rakova GV, Lagutina MA, Kazanskii KS (2001) Osmotic properties of poly(ethylene oxide) gels with localized charged units. Polymer 42:8075–8083

    Article  CAS  Google Scholar 

  16. Horkay F, Tasaki I, Basser PJ (2000) Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules 1:84–89

    Article  CAS  Google Scholar 

  17. Ou R, Zhang H, Kim S, SimonGP HH, Wang H (2017) Improvement of the swelling properties of ionic hydrogels by the incorporation of hydrophobic, elastic microfibers for forward osmosis applications. Ind Eng Chem Res 56:505–512

    Article  CAS  Google Scholar 

  18. Chen Y, Chen Q, Song L, Li HP, Hou FZ (2009) Preparation and characterization of encapsulation of Europium complex into meso-structured silica monoliths using PEG as the template. Microporous Mesoporous Mater 122:7–12

    Article  CAS  Google Scholar 

  19. Magalhães ASG, Neto MPA, Bezerra MN, Ricardo NMPS, Feitosa JPA (2012) Application of FTIR in the determination of acrylate content in poly(sodium acrylate-co-acrylamide) superabsorbent hydrogels. Quim Nova 35:1464–1467

    Article  Google Scholar 

  20. Zhang X, Bhuvana S, Loo LS (2012) Characterization of layered silicate dispersion in polymer nanocomposites using Fourier transform infrared spectroscopy. J Appl PolymSci 125:E175–E180

    Article  CAS  Google Scholar 

  21. Biswal DR, Singh RP (2004) Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 57:379–387

    Article  CAS  Google Scholar 

  22. Yang X, Tang L, Guo Y, Liang C, Zhang Q, Kou K, Gu J (2017) Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers. Compos Part A-Appl S 101:237–242

    Article  CAS  Google Scholar 

  23. Tang L, Dang J, He M, Li J, Kong J, Tang Y, Gu J (2019) Preparation and properties of cyanate-based wave-transparent laminated composites reinforced by dopamine/POSS functionalized Kevlar cloth. Compos Sci Technol 169:120–126

    Article  CAS  Google Scholar 

  24. Alam MA, Takafuji M, Ihara H (2013) Thermosensitive hybrid hydrogels with silica nanoparticle-cross-linked polymer networks. J Colloid Interface Sci 405:109–117

    Article  Google Scholar 

  25. Thomas NL, Windle AH (1978) Transport of methanol in poly(methyl methacrylate). Polymer 19:255–265

    Article  CAS  Google Scholar 

  26. Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford, p 414

    Google Scholar 

  27. Thomas NL, Windle AH (1980) A deformation model for Case II diffusion. Polymer 21:613–619

    Article  CAS  Google Scholar 

  28. Berens AR, Hopfenberg HB (1978) Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer 19:489–496

    Article  CAS  Google Scholar 

  29. Martinez-Ruvalcaba A, Sanchez-Diaz JC, Becerra F, Cruz-Barba LE, Gonzales-Alvarez A (2009) Swelling characterization and drug delivery kinetics of polyacrylamide-co-itaconic acid/chitosan hydrogels. Express Polym Lett 3:25–32

    Article  CAS  Google Scholar 

  30. Roy S, Xu WQ, Park SJ, Liechti KM (2000) Anomalous diffusion of a penetrant in a viscoelastic polymer: modelling and testing. Polym Polym Compos 8:205–305

    Google Scholar 

  31. Garcia-Fierro JL, Aleman JV (1985) Diffusion of water in glassy epoxide prepolymers. Polym Eng Sci 25:419–424

    Article  CAS  Google Scholar 

  32. Wack H, Ulbricht M (2007) Method and model for the analysis of gel-blocking effects during the swelling of polymeric hydrogels. Ind Eng Chem Res 46:359–364

    Article  CAS  Google Scholar 

  33. Nguyen VN, Perrin FX, Vernet JL (2005) Water permeability of organic/inorganic hybrid coatings prepared by sol-gel method: a comparison between gravimetric and capacitance measurements and evaluation of non-Fickian sorption models. Corros Sci 47:397–412

    Article  CAS  Google Scholar 

  34. Wack H, Ulbricht M (2009) Effect of synthesis composition on the swelling pressure of polymeric hydrogels. Polymer 50:2075–2080

    Article  CAS  Google Scholar 

  35. Huang X, Unno H, Akenata T, Hirasa O (1988) Swelling pressure of poly(vinylmethylether) gel (PVMEG) in swelling process. J Chem Eng Jpn 21:551–555

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Slisenko.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slisenko, O., Mamunya, Y. Novel highly hydrophilic organic/inorganic composites based on polyacrylamide and silica: synthesis strategy, structure and swelling behaviour. J Polym Res 26, 164 (2019). https://doi.org/10.1007/s10965-019-1823-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1823-4

Keywords

Navigation