Skip to main content
Log in

Application of Raman Spectroscopy for Analysis of Carbon Nanotube Distribution in Living Cells

  • Published:
Journal of Applied Spectroscopy Aims and scope

We have used Raman spectroscopy combined with confocal microscopy to study suspensions of single-wall and double-wall carbon nanotubes of different lengths and also multiwall carbon nanotubes. We have shown that the intensity of the G mode in the Raman spectrum of carbon nanotubes is directly proportional to the nanotube concentration, the exposure time, the exciting radiation power, and depth of focus in the transparent sample under study. We have established that the Raman spectra of longer carbon nanotubes (~1 μm) are characterized by higher intensity of the G mode compared with short carbon nanotubes (~250–450 nm). The dependences obtained were used to determine the local intracellular concentration of carbon nanotubes within the waist of the exciting laser beam, with the aim of mapping the carbon nanotube distribution inside the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley, Darmstadt (2008), pp. 3–4.

    Google Scholar 

  2. D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J. P. Briand, M. Prato, K. Kostarelos, and A. Bianco, Angew. Chem. Int. Ed. Engl., 43, No. 39, 5242–5246 (2004).

    Article  Google Scholar 

  3. Z. Liu, S. Tabakman, K. Welsher, and H. Dai, Nano Res., 2, No. 2, 85–120 (2009).

    Article  Google Scholar 

  4. S. Y. Madani, N. Naderi, O. Dissanayake, A. Tan, and A. M. Seifalian, Int. J. Nanomed., 6, 2963–2979 (2011).

    Google Scholar 

  5. A. M. Elhissi, W. Ahmed, I. U. Hassan, V. R. Dhanak, and A. D’Emanuele, J. Drug. Deliv., 2012:837827 (2012).

    Article  Google Scholar 

  6. H. K. Moon, S. H. Lee, and H. C. Choi, ACS Nano, 3, No. 11, 3707–3713 (2009).

    Article  Google Scholar 

  7. S. Jain, S. R. Singh, and S. Pillai, J. Nanomed. Nanotechnol., 3, No. 5 (2012); doi: https://doi.org/10.4172/2157-7439.1000140.

  8. V. M. Irurzun, M. P. Ruiz, and D. E. Resasco, Carbon, 48, No. 10, 2873–2881 (2010).

    Article  Google Scholar 

  9. C. Zavaleta, A. de la Zerda, Z. Liu, S. Keren, Z. Cheng, M. Schipper, X. Chen, H. Dai, and S. S. Gambhir, Nano Lett., 8, No. 9, 2800–2805 (2008).

    Article  ADS  Google Scholar 

  10. C. Lamprecht, N. Gierlinger, E. Heister, B. Unterauer, B. Plochberger, M. Brameshuber, P. Hinterdorfer, S. Hild, and A. Ebner, J. Phys. Condens. Matter, 24, No. 16 (2012).

  11. C. Bertulli, H. J. Beeson, T. Hasan, and Y. Y. Huang, Nanotechnol., 24, No. 26, 265102 (2013).

    Article  ADS  Google Scholar 

  12. C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaul, and M. A. Pimenta, Phys. Rev. Lett., 93, 147406 (2004).

    Article  ADS  Google Scholar 

  13. Z. Liu, C. Davis, W. Cai, L. He, X. Chen, and H. Dai, PNAS, 105, 1410–1415 (2008).

    Article  ADS  Google Scholar 

  14. Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun, X. Chen, and H. Dai, Nature Nanotechnol., 2, No. 47, 47–52 (2007).

    Article  ADS  Google Scholar 

  15. D. A. Heller, S. Baik, T. E. Eurell, and M. S. Strano, Adv. Mater., 17, 2793 (2005).

    Article  Google Scholar 

  16. J. W. Kang, F. T. Nguyen, N. Lue, R. R. Dasari, and D. A. Heller, Nano Lett., 12, 67170–6174 (2012).

    Google Scholar 

  17. B. D. Holt, K. N. Dahl, and M. F. Islam, Small, 7, 2348–2355 (2011).

    Article  Google Scholar 

  18. I. V. Anoshkin, I. I. Nefedova, D. V. Lioubtchenko, I. S. Nefedov, and A. V. Räisänen, Carbon, 116, 547–552 (2017).

    Article  Google Scholar 

  19. M. V. Shuba, A. G. Paddubskaya, P. P. Kuzhir, S. A. Maksimenko, V. Ksenevich, G. Niaura, D. Seliuta, I. Kasalynas, and G. Valusis, Nanotechnol., 23, 495714 (2012).

    Article  Google Scholar 

  20. M. V. Shuba, A. Paddubskaya, P. P. Kuzhir, S. M. Maksimenko, E. Flahaut, V. Fierro, A. Celzard, and G. Valusis, J. Phys. D, 50, 08LT01 (2017).

    Article  Google Scholar 

  21. V. Neves, E. Heister, S. Costa, C. Tîlmaciu, E. Borowiak-Palen, C. E. Giusca, E. Flahaut, B. Soula, H. M. Coley, J. McFadden, and S. R. P. Silva, Adv. Funct. Mater., 20, No. 19, 3272–3279 (2010).

    Article  Google Scholar 

  22. A. S. Biris, E. I. Galanzha, Z. Li, M. Mahmood, Y. Xu, and V. P. Zharov, J. Biomed. Opt., 14, No. 2, 021006 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Golubewa.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 6, pp. 999–1005, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubewa, E.N., Shuba, M.V., Vasilieu, M.V. et al. Application of Raman Spectroscopy for Analysis of Carbon Nanotube Distribution in Living Cells. J Appl Spectrosc 85, 1121–1127 (2019). https://doi.org/10.1007/s10812-019-00768-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00768-7

Keywords

Navigation