Skip to main content

Advertisement

Log in

Plant growth regulators: a sustainable approach to combat pesticide toxicity

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Pesticides are chemical substances intended for preventing or controlling pests. These are toxic substances which contaminate soil, water bodies and vegetative crops. Excessive use of pesticides may cause destruction of biodiversity. In plants, pesticides lead to oxidative stress, inhibition of physiological and biochemical pathways, induce toxicity, impede photosynthesis and negatively affect yield of crops. Increased production of reactive oxygen species like superoxide radicals, O2 hydrogen peroxide, H2O2; singlet oxygen, O2; hydroxyl radical, OH; and hydroperoxyl radical HO2−, causes damage to protein, lipid, carbohydrate and DNA within plants. Plant growth regulators (PGR) are recognized for promoting growth and development under optimal as well as stress conditions. PGR combat adverse effect by acting as chemical messenger and under complex regulation, enable plants to survive under stress conditions. PGR mediate various physiological and biochemical responses, thereby reducing pesticide-induced toxicity. Exogenous applications of PGRs, such as brassinosteroid, cytokinins, salicylic acid, jasmonic acid, etc., mitigate pesticide toxicity by stimulating antioxidant defense system and render tolerance towards stress conditions. They provide resistance against pesticides by controlling production of reactive oxygen species, nutrient homeostasis, increase secondary metabolite production, and trigger antioxidant mechanisms. These phytohormones protect plants against oxidative damage by activating mitogen-stimulated protein kinase cascade. Current study is based on reported research work that has shown the effect of PGR in promoting plant growth subjected to pesticide stress. The present review covers the aspects of pesticidal response of plants and evaluates the contribution of PGRs in mitigating pesticide-induced stress and increasing the tolerance of plants. Further, the study suggests the use of PGRs as a tool in mitigating effects of pesticidal stress together with improved growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

DDT:

Dichlorodiphenyltrichloroethane

IMI:

Imidacloprid

OCs:

Organochlorines

PAHs:

Polycyclic aromatic hydrocarbons

PGR:

Plant growth regulator

ROS:

Reactive oxygen species

References

  • Addy-Orduna LM, Brodeur JC, Mateo R (2019) Oral acute toxicity of imidacloprid, thiamethoxam and clothianidin in eared doves: a contribution for the risk assessment of neonicotinoids in birds. Sci Total Environ 650:1216–1223

    CAS  PubMed  Google Scholar 

  • Ahammed GJ, Gao CJ, Ogweno JO, Zhou YH, Xia XJ, Mao WH, Shi K, Yu JQ (2012a) Brassinosteroids induce plant tolerance against phenanthrene by enhancing degradation and detoxification in Solanum lycopersicum L. Ecotox Environ Safe 80:28–36

    CAS  Google Scholar 

  • Ahammed GJ, Yuan HL, Ogweno JO, Zhou YH, Xia XJ, Mao WH, Shi K, Yu JQ (2012b) Brassinosteroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato. Chemosphere 86(5):546–555

    CAS  PubMed  Google Scholar 

  • Ahammed GJ, Zhang S, Shi K, Zhou YH, Yu JQ (2012c) Brassinosteroid improves seed germination and early development of tomato seedling under phenanthrene stress. Plant Growth Regul 68(1):87–96

    CAS  Google Scholar 

  • Ahammed GJ, Ruan YP, Zhou J, Xia XJ, Shi K, Zhou YH, Yu JQ (2013) Brassinosteroid alleviates polychlorinated biphenyls-induced oxidative stress by enhancing antioxidant enzymes activity in tomato. Chemosphere 90(11):2645–2653

    CAS  PubMed  Google Scholar 

  • Ahmed A, Shamsi A, Bano B (2018) Deciphering the toxic effects of iprodione, a fungicide and malathion, an insecticide on thiol protease inhibitor isolated from yellow Indian mustard seeds. Environ Toxicol Pharmacol 61:52–60

    CAS  PubMed  Google Scholar 

  • Ali M, Baek KH (2020) Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int J Mol Sci 21(2):621

    CAS  PubMed Central  Google Scholar 

  • Alsayeda H, Pascal-Lorber S, Nallanthigal C, Debrauwer L, Laurent F (2008) Transfer of the insecticide [14 C] imidacloprid from soil to tomato plants. Environ Chem Lett 6(4):229–234

    CAS  Google Scholar 

  • Ananieva EA, Christov KN, Popova LP (2004) Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to paraquat. J Plant Physiol 161(3):319–328

    CAS  PubMed  Google Scholar 

  • Ansari RA, Mahmood I (2017) Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Sci Hortic 226:1–9

    CAS  Google Scholar 

  • Arienzo M, Masuccio AA, Ferrara L (2013) Evaluation of sediment contamination by heavy metals, organochlorinated pesticides, and polycyclic aromatic hydrocarbons in the Berre coastal lagoon (southeast France). Arch Environ Con Tox 65(3):396–406

    CAS  Google Scholar 

  • Bi YF, Miao SS, Lu YC, Qiu CB, Zhou Y, Yang H (2012) Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae. J Hazard Mater 243:242–249

    CAS  PubMed  Google Scholar 

  • Cui J, Zhang R, Wu GL, Zhu HM, Yang H (2010) Salicylic acid reduces napropamide toxicity by preventing its accumulation in rapeseed (Brassica napus L.). Arch Environ Con Tox 59(1):100–108

    CAS  Google Scholar 

  • Dill GM, Sammons RD, Feng PC, Kohn F, Kretzmer K, Mehrsheikh A, Haupfear EA (2010) Glyphosate: discovery, development, applications, and properties. Dev Manage 1:1–33

    Google Scholar 

  • Farago S, Brunold C, Kreuz K (1994) Herbicide safeners and glutathione metabolism. Physiol Plant 91(3):537–542

    CAS  Google Scholar 

  • Fellner M (2003) Recent progress in brassinosteroid researchhormone perception and signal transductionBrassinosteroid. Springer, Dordrecht

    Google Scholar 

  • Fernandes RB, De Godoy KF, Malavazi I, Anschau V, Chaves DB, Filho A, Miyamoto S, Netto LES (2018) Identification and characterization of reduction agents of 1-Cys peroxiredoxins from Aspergillus fumigatus, a human opportunistic pathogen. Free Radic Biol Med 120:S155–S156

    Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat J, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100(2):241–254

    CAS  Google Scholar 

  • González-García MP, Vilarrasa-Blasi J, Zhiponova M, Divol F, Mora-García S, Russinova E, Caño-Delgado AI (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138(5):849–859

    PubMed  Google Scholar 

  • Gui T, Jia GF, Xu J, Ge SJ, Long XF, Zhang YP, Hu DY (2019) Determination of the residue dynamics and dietary risk of thiamethoxam and its metabolite clothianidin in citrus and soil by LC-MS/MS. J Environ Sci Heal B 54(4):326–335

    CAS  Google Scholar 

  • Handford CE, Elliott CT, Campbell K (2015) A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integr Environ Assess Manag 11(4):525–536

    PubMed  Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26(3):290–300

    Google Scholar 

  • Jx C, Zhou Yh, Jg D, Xj X, Kai S, Chen Sc Yu, Jq, (2011) Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant Cell Environ 34(2):347–358

    Google Scholar 

  • Kafilzadeh F (2015) Assessment of organochlorine pesticide residues in water, sediments and fish from Lake Tashk. Iran Achiev Life Sci 9(2):107–111

    Google Scholar 

  • Kaur R, Yadav P, Sharma A, Thukral AK, Kumar V, Kohli SK, Bhardwaj R (2017) Castasterone and citric acid treatment restores photosynthetic attributes in Brassica juncea L. under Cd (II) toxicity. Ecotox Environ Safe 145:466–475

    CAS  Google Scholar 

  • Kaya A, Doganlar ZB (2016) Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic. Ecotox Environ Safe 124:470–479

    CAS  Google Scholar 

  • Kaya A, Yigit E (2014) The physiological and biochemical effects of salicylic acid on sunflowers (Helianthus annuus) exposed to flurochloridone. Ecotox Environ Safe 106:232–238

    CAS  Google Scholar 

  • Laurent FM, Rathahao E (2003) Distribution of [14C] imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment. J Agr Food Chem 51(27):8005–8010

    CAS  Google Scholar 

  • Li G, Wan S, Zhou J, Yang Z, Qin P (2010) Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind Crop Prod 31(1):13–19

    Google Scholar 

  • Main AR, Headley JV, Peru KM, Michel NL, Cessna AJ, Morrissey CA (2014) Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada’s Prairie Pothole Region. PLoS ONE 9:3

    Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Biol 47(1):127–158

    CAS  Google Scholar 

  • Morillo E, Villaverde J (2017) Advanced technologies for the remediation of pesticide-contaminated soils. Sci Total Environ 586:576–597

    CAS  PubMed  Google Scholar 

  • Perdomo JA, Capó-Bauçà S, Carmo-Silva E, Galmés J (2017) Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Front Plant Sci 8:490

    PubMed  PubMed Central  Google Scholar 

  • Pimentel D (2009) Pesticides and pest control. Integrated pest management: innovation-development process. Springer, Dordrecht, pp 83–87

    Google Scholar 

  • Piñol R, Simón E (2009) Effect of 24-epibrassinolide on chlorophyll fluorescence and photosynthetic CO 2 assimilation in Vicia faba plants treated with the photosynthesis-inhibiting herbicide terbutryn. J Plant Growth Regul 28(2):97–105

    Google Scholar 

  • Qiun ZB, Guo JL, Zhu AJ, Zhang L, Zhang MM (2014) Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Safe 104:202–208

    Google Scholar 

  • Rani M, Shanker U, Jassal V (2017a) Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review. J Environ Manage 190:208–222

    CAS  PubMed  Google Scholar 

  • Rani M, Shanker U, Jassal V (2017b) Recent strategies for removal and degradation of persistent and toxic organochlorine pesticides using nanoparticles: a review. J Environ Manage 190:208–222

    CAS  PubMed  Google Scholar 

  • Rodrigo MA, Oturan N, Oturan MA (2014) Electrochemically assisted remediation of pesticides in soils and water: a review. Chem Rev 114(17):8720–8745

    CAS  PubMed  Google Scholar 

  • Sakuraba Y, Kim D, Kim YS, Hörtensteiner S, Paek NC (2014) Arabidopsis STAYGREEN-LIKE (SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth. FEBS Lett 588(21):3830–3837

    CAS  PubMed  Google Scholar 

  • Santos CV (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hortic 103(1):93–99

    CAS  Google Scholar 

  • Sarkar MA, Roy S, Kole RK, Chowdhury A (2001) Persistence and metabolism of imidacloprid in different soils of West Bengal. Pest Manag Sci 57(7):598–602

    CAS  PubMed  Google Scholar 

  • Sarnaik SS, Kanekar PP, Raut VM, Taware SP, Chavan KS, Bhadbhade BJ (2006) Effect of application of different pesticides to soybean on the soil microflora. J Environ Biol 37(2):423–426

    Google Scholar 

  • Sergiev IG, Alexieva VS, Ivanov SV, Moskova II, Karanov EN (2006) The phenylurea cytokinin 4PU-30 protects maize plants against glyphosate action. Pestic Biochem Physiol 85(3):139–146

    CAS  Google Scholar 

  • Shahid M, Ahmed B, Khan MS (2018) Evaluation of microbiological management strategy of herbicide toxicity to greengram plants. Biocatal Agric Biotechnol 14:96–108

    Google Scholar 

  • Shahzad B, Tanveer M, Che Z, Rehman A, Cheema SA, Sharma A, Song H (2018) Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: a review. Ecotox Environ Safe 147:935–944

    CAS  Google Scholar 

  • Sharma I, Bhardwaj R, Pati PK (2012) Mitigation of adverse effects of chlorpyrifos by 24-epibrassinolide and analysis of stress markers in a rice variety Pusa Basmati-1. Ecotox environ safe 85:72–81

    CAS  Google Scholar 

  • Sharma I, Bhardwaj R, Pati PK (2013) Stress modulation response of 24-epibrassinolide against imidacloprid in an elite indica rice variety Pusa Basmati-1. Pest Biochem Phys 105(2):144–153

    CAS  Google Scholar 

  • Sharma I, Bhardwaj R, Pati PK (2015) Exogenous application of 28-homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety Pusa Basmati-1. J Plant Growth Regul 34(3):509–518

    CAS  Google Scholar 

  • Sharma A, Kumar V, Singh R, Thukral AK, Bhardwaj R (2016) Effect of seed pre-soaking with 24-epibrassinolide on growth and photosynthetic parameters of Brassica juncea L. in imidacloprid soil. Ecotox Environ Safe 133:195–201

    CAS  Google Scholar 

  • Sharma A, Kumar V, Bhardwaj R, Thukral AK (2017a) Seed pre-soaking with 24-epibrassinolide reduces the imidacloprid pesticide residues in green pods of Brassica juncea L. Toxicol Environ Chem 99(1):95–103

    CAS  Google Scholar 

  • Sharma A, Thakur S, Kumar V, Kesavan AK, Thukral AK, Bhardwaj R (2017b) 24-epibrassinolide stimulates imidacloprid detoxification by modulating the gene expression of Brassica juncea L. BMC Plant Biol 17(1):56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Kumar V, Kumar R, Shahzad B, Thukral AK, Bhardwaj R (2018a) Brassinosteroid-mediated pesticide detoxification in plants: a mini-review. Cogent Food Agric 4(1):1436212

    Google Scholar 

  • Sharma A, Kumar V, Yuan H, Kanwar MK, Bhardwaj R, Thukral AK, Zheng B (2018b) Jasmonic acid seed treatment stimulates insecticide detoxification in Brassica juncea L. Front plant sci 9:1609

    PubMed  PubMed Central  Google Scholar 

  • Sharma A, Yuan H, Kumar V, Ramakrishnan M, Kohli SK, Kaur R, Thukral AK, Bhardwaj R, Zheng B (2019) Castasterone attenuates insecticide induced phytotoxicity in mustard. Ecotox Environ Safe 179:50–61

    CAS  Google Scholar 

  • Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Goulson D (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22(1):5–34

    CAS  Google Scholar 

  • Singh H, Singh NB, Singh A, Hussain I (2017) Exogenous application of salicylic acid to alleviate glyphosate stress in Solanum lycopersicum. Int J Veg Sci 23(6):552–566

    Google Scholar 

  • Singh NS, Sharma R, Parween T, Patanjali PK (2018) Pesticide contamination and human health risk factor. Modern Age Environmental Problems and their Remediation. Springer, Cham, pp 49–68

    Google Scholar 

  • Smirnoff N (1993) Tansley Review No. 52. The role of active oxygen in the response of plants to water deficit and desiccation. New phytol 1:27–58

    Google Scholar 

  • Soares C, Spormann S, Fidalgo F (2018) Salicylic acid improves the performance of the enzymatic antioxidant system of barley exposed to glyphosate. Free Radic Biol Med 120:S157

    Google Scholar 

  • Spormann S, Soares C, Fidalgo F (2019) Salicylic acid alleviates glyphosate-induced oxidative stress in Hordeum vulgare L. J Environ Manage 241:226–234

    CAS  PubMed  Google Scholar 

  • Varshney S, Khan MIR, Masood A, Per TS, Rasheed F, Khan NA (2015) Contribution of plant growth regulators in mitigation of herbicidal stress. J Plant Biochem Physiol 3:2

    Google Scholar 

  • Wang J, Lv M, Islam F, Gill RA, Yang C, Ali B, Zhou W (2016) Salicylic acid mediates antioxidant defense system and ABA pathway related gene expression in Oryza sativa against quinclorac toxicity. Ecotox Environ Safe 133:146–156

    CAS  Google Scholar 

  • Wang Z, Jiang Y, Peng X, Xu S, Zhang H, Gao J, Xi Z (2017) Exogenous 24-epibrassinolide regulates antioxidant and pesticide detoxification systems in grapevine after chlorothalonil treatment. Plant Growth Regul 81(3):455–466

    CAS  Google Scholar 

  • Wasternack C (2014) Action of jasmonates in plant stress responses and development—applied aspects. Biotechnol Adv 32(1):31–39

    CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111(6):1021–1058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XJ, Zhang Y, Wu JX, Wang JT, Zhou YH, Shi K, Yu YL, Yu JQ (2009) Brassinosteroids promote metabolism of pesticides in cucumber. J Agric Food Chem 57(18):8406–8413

    CAS  PubMed  Google Scholar 

  • Xie L, Yang C, Wang X (2011) Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. J exp bot 62(13):4495–4506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Zhang W, Chen J, Li X (2015) Methyl jasmonate alleviates cadmium toxicity in Solanum nigrum by regulating metal uptake and antioxidative capacity. Biol Plant 59(2):373–381

    CAS  Google Scholar 

  • Yang CJ, Zhang C, Lu YN, Jin JQ, Wang XL (2011) The mechanisms of brassinosteroids' action: from signal transduction to plant development. Mol plant 4(4):588–600

    CAS  PubMed  Google Scholar 

  • Yuan LB, Peng ZH, Zhi TT, Zho Z, Liu Y, Zhu Q, Ren CM (2015) Brassinosteroid enhances cytokinin-induced anthocyanin biosynthesis in Arabidopsis seedlings. Biol plantarum 59(1):99–105

    CAS  Google Scholar 

  • Yüzbaşıoğlu E, Dalyan E (2019) Salicylic acid alleviates thiram toxicity by modulating antioxidant enzyme capacity and pesticide detoxification systems in the tomato (Solanum lycopersicum Mill.). Plant Physiol Biochem 135:322–330

    PubMed  Google Scholar 

  • Zhang W (2018) Global pesticide use: profile, trend, cost/benefit and more. Proc Int Acad Ecol Environ Sci 8(1):1

    Google Scholar 

  • Zhang X, Schmidt RE (2000) Hormone-containing products’ impact on antioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Sci 40(5):1344–1349

    CAS  Google Scholar 

  • Zhang W, Jiang F, Ou J (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1(2):125

    CAS  Google Scholar 

  • Zhou Y, Xia X, Yu G, Wang J, Wu J, Wang M, Yang Y, Shi K, Yu Y, Chen Z, Gan J (2015) Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Sci Rep 5:9018

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

I would like to thank authors for their useful suggestions and Lovely Professional University for providing us platform to work.

Author information

Authors and Affiliations

Authors

Contributions

SJ prepared the manuscript and DK reviewed the manuscript. RS, RB and PA corrected major revisions after receiving suggestions from reviewers. All the authors checked, edited and approved the manuscript prior to its re submission.

Corresponding author

Correspondence to Dhriti Kapoor.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, S., Singh, R., Bhardwaj, R. et al. Plant growth regulators: a sustainable approach to combat pesticide toxicity. 3 Biotech 10, 466 (2020). https://doi.org/10.1007/s13205-020-02454-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02454-4

Keywords

Navigation