Skip to main content
Log in

Empirically grounded agent-based models of innovation diffusion: a critical review

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Innovation diffusion has been studied extensively in a variety of disciplines, including sociology, economics, marketing, ecology, and computer science. Traditional literature on innovation diffusion has been dominated by models of aggregate behavior and trends. However, the agent-based modeling (ABM) paradigm is gaining popularity as it captures agent heterogeneity and enables fine-grained modeling of interactions mediated by social and geographic networks. While most ABM work on innovation diffusion is theoretical, empirically grounded models are increasingly important, particularly in guiding policy decisions. We present a critical review of empirically grounded agent-based models of innovation diffusion, developing a categorization of this research based on types of agent models as well as applications. By connecting the modeling methodologies in the fields of information and innovation diffusion, we suggest that the maximum likelihood estimation framework widely used in the former is a promising paradigm for calibration of agent-based models for innovation diffusion. Although many advances have been made to standardize ABM methodology, we identify four major issues in model calibration and validation, and suggest potential solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The concepts of calibration and validation are explained in Sect. 5.1 below.

  2. For simplicity, we omit “20” and use the last two digits to denote a year. For example, “07(2)” stands for 2 publications in year 2007.

  3. The short for the Unified Modeling Language, developed by the Object Management Group: http://www.omg.org.

  4. A standard to describe agent-based models originally proposed by Grimm et al. (2006) for ecological modeling.

References

  • Ajzen I (1991) The theory of planned behavior. Organ Behav Hum Decis Process 50(2):179–211

    Article  Google Scholar 

  • Alexander P, Moran D, Rounsevell MD, Smith P (2013) Modelling the perennial energy crop market: the role of spatial diffusion. J R Soc Interface 10(88):20130,656

    Article  Google Scholar 

  • Alexander P, Moran D, Smith P, Hastings A, Wang S, Sünnenberg G, Lovett A, Tallis MJ, Casella E, Taylor G et al (2014) Estimating uk perennial energy crop supply using farm-scale models with spatially disaggregated data. GCB Bioenergy 6(2):142–155

    Article  Google Scholar 

  • Axelrod RM (1997) The complexity of cooperation: agent-based models of competition and collaboration. Princeton University Press, Princeton

    Book  Google Scholar 

  • Axtell R, Axelrod R, Epstein JM, Cohen MD (1996) Aligning simulation models: a case study and results. Comput Math Organ Theory 1(2):123–141

    Article  Google Scholar 

  • Bakshy E, Rosenn I, Marlow C, Adamic L (2012) The role of social networks in information diffusion. In: International world wide web conference, ACM, pp 519–528

  • Banks J (1998) Handbook of simulation: principles, methodology, advances, applications, and practice. Wiley, New York

    Book  Google Scholar 

  • Barabási AL, Albert R, Jeong H (1999) Mean-field theory for scale-free random networks. Phys A Stat Mech Appl 272(1):173–187

    Article  Google Scholar 

  • Bass FM (1969) A new product growth for model consumer durables. Manag Sci 15(5):215–227

    Article  MATH  Google Scholar 

  • Berger T (2001) Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis. Agric Econ 25(2–3):245–260

    Article  Google Scholar 

  • Berger T, Birner R, Mccarthy N, DíAz J, Wittmer H (2007) Capturing the complexity of water uses and water users within a multi-agent framework. Water Resour Manag 21(1):129–148

    Article  Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin

    MATH  Google Scholar 

  • Bonchi F (2011) Influence propagation in social networks: a data mining perspective. IEEE Intell Inform Bull 12(1):8–16

    Google Scholar 

  • Borshchev A, Filippov A (2004) From system dynamics and discrete event to practical agent based modeling: reasons, techniques, tools. In: International conference of the system dynamics society, Citeseer, vol 22

  • Briegel R, Ernst A, Holzhauer S, Klemm D, Krebs F, Piñánez AM (2012) Social-ecological modelling with lara: a psychologically well-founded lightweight agent architecture. PhD thesis, International Environmental Modelling and Software Society (iEMSs)

  • Broekhuizen TL, Delre SA, Torres A (2011) Simulating the cinema market: how cross-cultural differences in social influence explain box office distributions. J Prod Innov Manag 28(2):204–217

    Article  Google Scholar 

  • Brown DG, Page S, Riolo R, Zellner M, Rand W (2005) Path dependence and the validation of agent-based spatial models of land use. Int J Geogr Inf Sci 19(2):153–174

    Article  Google Scholar 

  • Carley KM (1996) Validating computational models. http://www.casos.cs.cmu.edu/publications/papers.php

  • Chandrasekaran D, Tellis GJ (2007) A critical review of marketing research on diffusion of new products. Rev Market Res 3(1):39–80

    Article  Google Scholar 

  • Chica M, Rand W (2017) Building agent-based decision support systems for word-of-mouth programs: a freemium application. J Market Res. doi:10.1509/jmr.15.0443 (in press)

  • Dawid H (2006) Agent-based models of innovation and technological change. Handb Comput Econ 2:1235–1272

    Article  Google Scholar 

  • Deffuant G, Neau D, Amblard F, Weisbuch G (2000) Mixing beliefs among interacting agents. Adv Complex Syst 3(01n04):87–98

    Article  Google Scholar 

  • Deffuant G, Amblard F, Weisbuch G, Faure T (2002a) How can extremism prevail? A study based on the relative agreement interaction model. J Artif Soc Soc Simul 5(4). http://jasss.soc.surrey.ac.uk/5/4/1.html

  • Deffuant G, Huet S, Bousset JP, Henriot J, Amon G, Weisbuch G et al (2002b) Agent based simulation of organic farming conversion in Allier département. Complex Ecosyst Manag 158–189

  • Dugundji ER, Gulyás L (2008) Sociodynamic discrete choice on networks in space: impacts of agent heterogeneity on emergent outcomes. Environ Plan B Plan Des 35(6):1028–1054

    Article  Google Scholar 

  • Epstein JM (1999) Agent-based computational models and generative social science. Complexity 4(5):41–60

    Article  MathSciNet  Google Scholar 

  • Ernst A, Briegel R (2017) A dynamic and spatially explicit psychological model of the diffusion of green electricity across Germany. J Environ Psychol 52:183–193

    Article  Google Scholar 

  • Faber A, Valente M, Janssen P (2010) Exploring domestic micro-cogeneration in the netherlands: an agent-based demand model for technology diffusion. Energy Policy 38(6):2763–2775

    Article  Google Scholar 

  • Fagiolo G, Windrum P, Moneta A (2006) Empirical validation of agent-based models: a critical survey. Technical report LEM working paper series

  • Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning. Springer, Berlin

    MATH  Google Scholar 

  • Galán JM, López-Paredes A, Del Olmo R (2009) An agent-based model for domestic water management in valladolid metropolitan area. Water Resour Res 45(5). doi:10.1029/2007WR006536

  • Galuba W, Aberer K, Chakraborty D, Despotovic Z, Kellerer W (2010) Outtweeting the twitterers-predicting information cascades in microblogs. WOSN 10:3–11

    Google Scholar 

  • Garcia R (2005) Uses of agent-based modeling in innovation/new product development research*. J Prod Innov Manag 22(5):380–398

    Article  Google Scholar 

  • Garcia R, Jager W (2011) From the special issue editors: agent-based modeling of innovation diffusion*. J Prod Innov Manag 28(2):148–151

    Article  Google Scholar 

  • Garcia R, Rummel P, Hauser J (2007) Validating agent-based marketing models through conjoint analysis. J Bus Res 60(8):848–857

    Article  Google Scholar 

  • Gilbert N, Troitzsch K (2005) Simulation for the social scientist. McGraw-Hill Education, New York

    Google Scholar 

  • Goldenberg J, Libai B, Muller E (2001) Talk of the network: a complex systems look at the underlying process of word-of-mouth. Market Lett 12(3):211–223

    Article  Google Scholar 

  • Gomez Rodriguez M, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 1019–1028

  • Gomez Rodriguez M, Balduzzi D, Schölkopf B, Scheffer GT, et al (2011) Uncovering the temporal dynamics of diffusion networks. In: International conference on machine learning, international machine learning society, pp 561–568

  • Gomez Rodriguez M, Leskovec J, Schölkopf B (2013) Structure and dynamics of information pathways in online media. In: ACM international conference on web search and data mining, ACM, pp 23–32

  • Granovetter M (1978) Threshold models of collective behavior. Am J Sociol 83(6):1420–1443

    Article  Google Scholar 

  • Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH, Weiner J, Wiegand T, DeAngelis DL (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310(5750):987–991

    Article  Google Scholar 

  • Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz SK, Huse G et al (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198(1):115–126

    Article  Google Scholar 

  • Guille A, Hacid H (2012) A predictive model for the temporal dynamics of information diffusion in online social networks. In: International world wide web conference, ACM, pp 1145–1152

  • Guille A, Hacid H, Favre C, Zighed DA (2013) Information diffusion in online social networks: a survey. ACM SIGMOD Rec 42(2):17–28

    Article  Google Scholar 

  • Günther M, Stummer C, Wakolbinger L, Wildpaner M (2011) An agent-based simulation approach for the new product diffusion of a novel biomass fuel. J Oper Res Soc 62(1):12–20

    Article  Google Scholar 

  • Hauser J, Tellis GJ, Griffin A (2006) Research on innovation: a review and agenda for marketing science. Market Sci 25(6):687–717

    Article  Google Scholar 

  • Hegselmann R, Krause U et al (2002) Opinion dynamics and bounded confidence models, analysis, and simulation. J Artif Soc Soc Simul 5(3). http://jasss.soc.surrey.ac.uk/5/3/2.html

  • Herrmann J, Rand WM, Schein B, Vodopivec N (2013) An agent-based model of urgent diffusion in social media. Robert H Smith School research paper

  • Holland JH (1995) Hidden order: how adaptation builds complexity. Basic Books, New York

    Google Scholar 

  • Holtz G, Pahl-Wostl C (2012) An agent-based model of groundwater over-exploitation in the Upper Guadiana, Spain. Reg Environ Change 12(1):95–121

    Article  Google Scholar 

  • Hopp WJ (2004) Ten most influential papers of management science’s first 50 years. Manag Sci 50(12–supplement):1763–1763

    Article  Google Scholar 

  • Jager W (2000) Modelling consumer behaviour. Rijksuniversiteit Groningen, Groningen

    Google Scholar 

  • Jager W, Janssen M, De Vries H, De Greef J, Vlek C (2000) Behaviour in commons dilemmas: homo economicus and homo psychologicus in an ecological-economic model. Ecol Econ 35(3):357–379

    Article  Google Scholar 

  • Janssen MA, Jager W (2002) Stimulating diffusion of green products. J Evolut Econ 12(3):283–306

    Article  Google Scholar 

  • Jensen T, Holtz G, Baedeker C, Chappin ÉJ (2016) Energy-efficiency impacts of an air-quality feedback device in residential buildings: an agent-based modeling assessment. Energy Build 116:151–163

    Article  Google Scholar 

  • Karsai M, Iñiguez G, Kaski K, Kertész J (2014) Complex contagion process in spreading of online innovation. J R Soc Interface 11(101):20140,694

    Article  Google Scholar 

  • Karsai M, Iñiguez G, Kikas R, Kaski K, Kertész J (2016) Local cascades induced global contagion: how heterogeneous thresholds, exogenous effects, and unconcerned behaviour govern online adoption spreading. Sci Rep 6. doi:10.1038/srep27178

  • Kaufmann P, Stagl S, Franks DW (2009) Simulating the diffusion of organic farming practices in two new eu member states. Ecol Econ 68(10):2580–2593

    Article  Google Scholar 

  • Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 137–146

  • Kiesling E, Günther M, Stummer C, Wakolbinger LM (2012) Agent-based simulation of innovation diffusion: a review. Cent Eur J Oper Res 20(2):183–230

    Article  Google Scholar 

  • Kim S, Lee K, Cho JK, Kim CO (2011) Agent-based diffusion model for an automobile market with fuzzy topsis-based product adoption process. Expert Syst Appl 38(6):7270–7276

    Article  Google Scholar 

  • Kleijen J (1999) Validation of models: statistical techniques and data availability. In: Proceedings of the 31st conference on winter simulation: simulation—a bridge to the future, vol 1, pp 647–654

  • Knepell PL, Arangno DC (1993) Simulation validation: a confidence assessment methodology, vol 15. Wiley, New York

    Google Scholar 

  • Krebs F, Ernst A (2015) A spatially explicit agent-based model of the diffusion of green electricity: model setup and retrodictive validation. In: Social simulation conference, european social simulation association

  • Krebs F, Holzhauer S, Ernst A (2013) Modelling the role of neighbourhood support in regional climate change adaptation. Appl Spat Anal Policy 6(4):305–331

    Article  Google Scholar 

  • Lawless JF (2011) Statistical models and methods for lifetime data, vol 362. Wiley, New York

    MATH  Google Scholar 

  • Lee T, Yao R, Coker P (2014) An analysis of uk policies for domestic energy reduction using an agent based tool. Energy Policy 66:267–279

    Article  Google Scholar 

  • Lewin R (1999) Complexity: life at the edge of chaos. University of Chicago Press, Chicago

    Google Scholar 

  • Macal CM (2016) Everything you need to know about agent-based modelling and simulation. J Simul 10(2):144–156

    Article  Google Scholar 

  • Macal C, North M (2010) Tutorial on agent-based modelling and simulation. J Simul 4(3):151–162

    Article  Google Scholar 

  • Macy MW, Willer R (2002) From factors to actors: computational sociology and agent-based modeling. Ann Rev Sociol 28:143–166

    Article  Google Scholar 

  • Mahajan V, Muller E, Bass FM (1990) New product diffusion models in marketing: a review and directions for research. J Market 54(1):1–26

    Article  Google Scholar 

  • Mahajan V, Muller E, Wind Y (2000) New-product diffusion models, vol 11. Springer, Berlin

    Google Scholar 

  • Matthews RB, Gilbert NG, Roach A, Polhill JG, Gotts NM (2007) Agent-based land-use models: a review of applications. Landsc Ecol 22(10):1447–1459

    Article  Google Scholar 

  • McCoy D, Lyons S (2014) Consumer preferences and the influence of networks in electric vehicle diffusion: an agent-based microsimulation in ireland. Energy Res Soc Sci 3:89–101

    Article  Google Scholar 

  • McPherson M, Smith-Lovin L, Cook JM (2001) Birds of a feather: homophily in social networks. Annu Rev Sociol 27:415–444

    Article  Google Scholar 

  • Meade N, Islam T (2006) Modelling and forecasting the diffusion of innovation-a 25-year review. Int J Forecast 22(3):519–545

    Article  Google Scholar 

  • Michalek JJ, Papalambros PY, Skerlos SJ (2004) A study of fuel efficiency and emission policy impact on optimal vehicle design decisions. J Mech Des 126(6):1062–1070

    Article  Google Scholar 

  • Myers S, Leskovec J (2010) On the convexity of latent social network inference. In: Advances in neural information processing systems, pp 1741–1749

  • Negahban A, Yilmaz L (2014) Agent-based simulation applications in marketing research: an integrated review. J Simul 8(2):129–142

    Article  Google Scholar 

  • Noble J, Davy S, Franks DW (2004) Effects of the topology of social networks on information transmission. In: International conference on simulation of adaptive behavior, pp 395–404

  • Ormerod P, Rosewell B (2009) Validation and verification of agent-based models in the social sciences. In: Squazzoni F (ed) Epistemological aspects of computer simulation in the social sciences: second international workshop, EPOS 2006, Brescia, Italy, October 5–6, 2006, Revised Selected and Invited Papers, Springer, Berlin (pp. 130–140). doi:10.1007/978-3-642-01109-2_10

  • Palmer J, Sorda G, Madlener R (2015) Modeling the diffusion of residential photovoltaic systems in italy: an agent-based simulation. Technol Forecast Soc Change 99:106–131

    Article  Google Scholar 

  • Peres R, Muller E, Mahajan V (2010) Innovation diffusion and new product growth models: a critical review and research directions. Int J Res Market 27(2):91–106

    Article  Google Scholar 

  • Plötz P, Gnann T, Wietschel M (2014) Modelling market diffusion of electric vehicles with real world driving datapart I: model structure and validation. Ecol Econ 107:411–421

    Article  Google Scholar 

  • Rai V, Robinson SA (2015) Agent-based modeling of energy technology adoption: empirical integration of social, behavioral, economic, and environmental factors. Environ Model Softw 70:163–177

    Article  Google Scholar 

  • Rand W, Rust RT (2011) Agent-based modeling in marketing: guidelines for rigor. Int J Res Market 28(3):181–193

    Article  Google Scholar 

  • Richiardi M, Leombruni R, Saam NJ, Sonnessa M (2006) A common protocol for agent-based social simulation. J Artif Soc Soc Simul 9(1):15

  • Rogers EM (1995) Diffusion of innovations. Free Press, New York, p 12

  • Rogers EM (2010) Diffusion of innovations. Simon and Schuster, New York

    Google Scholar 

  • Ryan B, Gross NC (1943) The diffusion of hybrid seed corn in two iowa communities. Rural Sociol 8(1):15

    Google Scholar 

  • Saito K, Ohara K, Yamagishi Y, Kimura M, Motoda H (2011) Learning diffusion probability based on node attributes in social networks. In: Foundations of intelligent systems, Springer, pp 153–162

  • Sanchez S (2001) Abc’s of output analysis. In: Proceedings of the 33nd conference on Winter simulation, vol 1, IEEE Computer Society,pp 30–38

  • Schreinemachers P, Berger T, Aune JB (2007) Simulating soil fertility and poverty dynamics in uganda: a bio-economic multi-agent systems approach. Ecol Econ 64(2):387–401

    Article  Google Scholar 

  • Schreinemachers P, Berger T, Sirijinda A, Praneetvatakul S (2009) The diffusion of greenhouse agriculture in Northern Thailand: combining econometrics and agent-based modeling. Can J Agric Econ Rev Can Agroecon 57(4):513–536

    Article  Google Scholar 

  • Schreinemachers P, Potchanasin C, Berger T, Roygrong S (2010) Agent-based modeling for ex ante assessment of tree crop innovations: litchis in Northern Thailand. Agric Econ 41(6):519–536

    Article  Google Scholar 

  • Schwarz N, Ernst A (2009) Agent-based modeling of the diffusion of environmental innovationsan empirical approach. Technol Forecast Soc Change 76(4):497–511

    Article  Google Scholar 

  • Schwoon M (2006) Simulating the adoption of fuel cell vehicles. J Evolut Econ 16(4):435–472

    Article  Google Scholar 

  • Shakarian P, Bhatnagar A, Aleali A, Guo R, Shaabani E (2015) Diffusion in social networks. doi:10.1007/978-3-319-23105-1

  • Sopha BM, Klöckner CA, Hertwich EG (2013) Adoption and diffusion of heating systems in norway: coupling agent-based modeling with empirical research. Environ Innov Soc Trans 8:42–61

    Article  Google Scholar 

  • Sorda G, Sunak Y, Madlener R (2013) An agent-based spatial simulation to evaluate the promotion of electricity from agricultural biogas plants in germany. Ecol Econ 89:43–60

    Article  Google Scholar 

  • Stonedahl F, Rand W (2014) When does simulated data match real data? Comparing model> Calibration Functions using Genetic Algorithms. Springer, Berlin

    Google Scholar 

  • Stummer C, Kiesling E, Günther M, Vetschera R (2015) Innovation diffusion of repeat purchase products in a competitive market: an agent-based simulation approach. Eur J Oper Res 245(1):157–167

    Article  Google Scholar 

  • Sun Z, Müller D (2013) A framework for modeling payments for ecosystem services with agent-based models, bayesian belief networks and opinion dynamics models. Environ Model Softw 45:15–28

    Article  Google Scholar 

  • Train KE (2009) Discrete choice methods with simulation. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Tran M (2012) Agent-behaviour and network influence on energy innovation diffusion. Commun Nonlinear Sci Nume Simul 17(9):3682–3695

    Article  MathSciNet  Google Scholar 

  • Trusov M, Rand W, Joshi YV (2013) Improving prelaunch diffusion forecasts: using synthetic networks as simulated priors. J Market Res 50(6):675–690

    Article  Google Scholar 

  • Vag A (2007) Simulating changing consumer preferences: a dynamic conjoint model. J Bus Res 60(8):904–911

    Article  Google Scholar 

  • Valente TW (1995) Network models of the diffusion of innovations. Hampton Press

  • Valente TW (2005) Network models and methods for studying the diffusion of innovations. Models Methods Social Netw Anal 28:98

    Article  Google Scholar 

  • Valente TW, Rogers EM (1995) The origins and development of the diffusion of innovations paradigm as an example of scientific growth. Sci Commun 16(3):242–273

    Article  Google Scholar 

  • Van Vliet O, De Vries B, Faaij A, Turkenburg W, Jager W (2010) Multi-agent simulation of adoption of alternative fuels. Transp Res Part D Transp Environ 15(6):326–342

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of small-worldnetworks. Nature 393(6684):440–442

    Article  MATH  Google Scholar 

  • Windrum P, Fagiolo G, Moneta A (2007) Empirical validation of agent-based models: alternatives and prospects. J Artif Soc Soc Simul 10(2):8

    Google Scholar 

  • Wolf I, Nuss J, Schröder T, de Haan G (2012) The adoption of electric vehicles: an empirical agent-based model of attitude formation and change. In: Conference of the European association for social simulation, pp 93–98

  • Xiang X, Kennedy R, Madey G, Cabaniss S (2005) Verification and validation of agent-based scientific simulation models. In: Agent-directed simulation conference, pp 47–55

  • Zhang T, Gensler S, Garcia R (2011) A study of the diffusion of alternative fuel vehicles: an agent-based modeling approach. J Prod Innov Manag 28(2):152–168

    Article  Google Scholar 

  • Zhang H, Vorobeychik Y, Letchford J, Lakkaraju K (2016) Data-driven agent-based modeling, with application to rooftop solar adoption. Auton Agents Multi-agent Syst 30(6):1023–1049

    Article  Google Scholar 

  • Zhao J, Mazhari E, Celik N, Son YJ (2011) Hybrid agent-based simulation for policy evaluation of solar power generation systems. Simul Model Pract Theory 19:2189–2205

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the U.S. Department of Energy (DOE) office of Energy Efficiency and Renewable Energy, under the Solar Energy Evolution and Diffusion Studies (SEEDS) program, the National Science Foundation (IIS-1526860), and the Office of Naval Research (N00014-15-1-2621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Vorobeychik, Y. Empirically grounded agent-based models of innovation diffusion: a critical review. Artif Intell Rev 52, 707–741 (2019). https://doi.org/10.1007/s10462-017-9577-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-017-9577-z

Keywords

Navigation