Skip to main content
Log in

Effective connectivity of dorsal and ventral visual pathways in chunk decomposition

  • Research Papers
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Chunk decomposition is defined as a cognitive process which breaks up familiar items into several parts to reorganize them in an alternative approach. The present study investigated the effective connectivity of visual streams in chunk decomposition through dynamic causal modeling (DCM). The results revealed that chunk familiarity and perceptual tightness made a combined contribution to highlight not only the “what” and the “where” streams, but also the effective connectivity from the left inferior temporal gyrus to the left superior parietal lobule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo J, Niki K, Knoblich G. Perceptual contributions to problem solving: Chunk decomposition of Chinese characters. Brain Res Bull, 2006, 70: 430–443 10.1016/j.brainresbull.2006.07.005, 17027779

    Article  PubMed  Google Scholar 

  2. Knoblich G, Ohlsson S, Haider H, et al. Constraint relaxation and chunk decomposition in insight problem solving. J Exp Psychol Learn Mem Cogn, 1999, 25: 1534–1555 10.1037/0278-7393.25.6.1534

    Article  Google Scholar 

  3. Luo J, Knoblich G. Studying insight problem solving with neuroscientific methods. Methods, 2007, 42: 77–86 1:CAS:528:DC%2BD2sXkt1aqsLs%3D, 10.1016/j.ymeth.2006.12.005, 17434418

    Article  PubMed  CAS  Google Scholar 

  4. Knoblich G, Ohlsson S, Raney G E. An eye movement study of insight problem solving. Mem Cognit, 2001, 29: 1000–1009 1:STN:280:DC%2BD38%2FptFSmsQ%3D%3D, 11820744

    Article  PubMed  CAS  Google Scholar 

  5. Wandell B A, Dumoulin O D, Brewer A A. Visual field maps in human cortex. Neuron, 2007, 56: 366–83 1:CAS:528:DC%2BD2sXht12jsrvP, 10.1016/j.neuron.2007.10.012, 17964252

    Article  PubMed  CAS  Google Scholar 

  6. Ungerleider L G, Mishkin M. Two cortical visual systems. In: Goodale M A, Mansfield R J W, eds. Analysis of Visual Behavior. Cambridge: MIT Press, 1982

    Google Scholar 

  7. Kaas J H, Lyon D C. Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Res Rev, 2007, 55: 285–96 10.1016/j.brainresrev.2007.02.008, 17433837

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wohlschlager A M, Specht K, Lie C, et al. Linking retinotopic fMRI mapping and anatomical probability maps of human occipital areas V1 and V2. Neuroimage, 2005, 26: 73–82 1:STN:280:DC%2BD2M3ivFChsA%3D%3D, 10.1016/j.neuroimage.2005.01.021, 15862207

    Article  PubMed  CAS  Google Scholar 

  9. Milner A D, Goodale M A. The Visual Brain in Action. Oxford: Oxford University Press, 1995

    Google Scholar 

  10. Laycock R, Crewther D, Crewther S. The advantage in being magnocellular: A few more remarks on attention and the magnocellular system. Neurosci Biobehav Rev, 2008, 32: 1409–1415 1:STN:280:DC%2BD1cnhsVSrsQ%3D%3D, 10.1016/j.neubiorev.2008.04.008, 18514901

    Article  PubMed  CAS  Google Scholar 

  11. Zanon M, Busan P, Monti F, et al. Cortical connections between dorsal and ventral visual streams in humans: Evidence by TMS/EEG co-registration. Brain Topogr, 2009

  12. Hagmann P, Cammoun L, Gigandet X, et al. Mapping the structural core of human cerebral cortex. PLoS Biol, 2008, 6: e159 10.1371/journal.pbio.0060159, 18597554

    Article  PubMed  PubMed Central  Google Scholar 

  13. Heim S, Eickhoff S B, Ischebeck A K, et al. Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM. Hum Brain Mapp, 2009, 30: 392–402 10.1002/hbm.20512, 18095285

    Article  PubMed  Google Scholar 

  14. Siman-Tov T, Mendelsohn A, Schonberg T, et al. Bihemispheric leftward bias in a visuospatial attention-related network. J Neurosci, 2007, 27: 11271–11278 1:CAS:528:DC%2BD2sXht1ekur3L, 10.1523/JNEUROSCI.0599-07.2007, 17942721

    Article  PubMed  CAS  Google Scholar 

  15. Grefkes C, Eickhoff S B, Nowak D A, et al. Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. Neuroimage, 2008, 41: 1382–1394 10.1016/j.neuroimage.2008.03.048, 18486490

    Article  PubMed  Google Scholar 

  16. Schlooseer R G, Wagner G, Koch K, et al. Fronto-cingulate effective connectivity in major depression: A study with fMRI and dynamic causal modeling. Neuroimage, 2008, 43: 645–655 10.1016/j.neuroimage.2008.08.002

    Article  Google Scholar 

  17. Mechelli A, Price C J, Noppeney U, et al. A dynamic causal modeling study on category effects: Bottom-up or top-down mediation? J Cogn Neurosci, 2003, 15: 925–934 10.1162/089892903770007317, 14628754

    Article  PubMed  Google Scholar 

  18. Penny W D, Stephan K E, Mechelli A, et al. Modeling functional integration: A comparison of structural equation and dynamic causal models. Neuroimage, 2004, 23: 264–274 10.1016/j.neuroimage.2004.07.041

    Article  Google Scholar 

  19. Ashburner J, Friston K J, Penny W D. Dynamical causal modeling. In: Human Brain Function. San Diego: Academic Press, 2003

    Google Scholar 

  20. Kershaw T C, Ohlsson S. Multiple causes of difficulty in insight: The case of the nine-dot problem. J Exp Psychol Learn Mem Cogn, 2004, 30: 3–13 10.1037/0278-7393.30.1.3, 14736292

    Article  PubMed  Google Scholar 

  21. Penny W D, Stephan K E, Mechelli A, et al. Comparing dynamic causal models. Neuroimage, 2004, 22: 1157–1172 1:STN:280:DC%2BD2czhvFKqsg%3D%3D, 10.1016/j.neuroimage.2004.03.026, 15219588

    Article  PubMed  CAS  Google Scholar 

  22. Stephan K E, Penny W D, Daybuzeau J, et al. Bayesian model selection for group studies. Neuroimage, 2009, 46: 1004–1017 10.1016/j.neuroimage.2009.03.025, 19306932

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chee M W, Tan E W, Thiel T. Mandarin and English single word processing studied with functional magnetic resonance imaging. J Neurosci, 1999, 19: 3050–3056 1:CAS:528:DyaK1MXitlGnurc%3D, 10191322

    PubMed  CAS  Google Scholar 

  24. Chee M W, Weekes B, Lee K M, et al. Overlap and dissociation of semantic processing of Chinese characters, English words, and pictures: Evidence from fMRI. Neuroimage, 2000, 12: 392–403 1:STN:280:DC%2BD3M%2FhsVSrsQ%3D%3D, 10.1006/nimg.2000.0631, 10988033

    Article  PubMed  CAS  Google Scholar 

  25. Lee C Y, Tsai J L, Kuo W J, et al. Neuronal correlates of consistency and frequency effects on Chinese character naming: An event-related fMRI study. Neuroimage, 2004, 23: 1235–1245 10.1016/j.neuroimage.2004.07.064, 15589089

    Article  PubMed  Google Scholar 

  26. Tan L H, Feng C M, Foxy P T, et al. An fMRI study with written Chinese. Neuroreport, 2001, 12: 83–88 1:STN:280:DC%2BD3M7lsVCqsw%3D%3D, 10.1097/00001756-200101220-00024, 11201097

    Article  PubMed  CAS  Google Scholar 

  27. Tan L H, Liu H L, Perfetti C A, et al. The neural system underlying Chinese logograph reading. Neuroimage, 2001, 13: 836–846 1:STN:280:DC%2BD3MzpsFaquw%3D%3D, 10.1006/nimg.2001.0749, 11304080

    Article  PubMed  CAS  Google Scholar 

  28. Deng Y, Booth J R, Chou T L, et al. Item-specific and generalization effects on brain activation when learning Chinese characters. Neuropsychologia, 2008, 46: 1864–1876 10.1016/j.neuropsychologia.2007.09.010, 18514678

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nakamura K, Honda M, Okada T, et al. Participation of the left posterior inferior temporal cortex in writing and mental recall of kanji orthography: A functional MRI study. Brain, 2000, 5: 954–967 10.1093/brain/123.5.954

    Article  Google Scholar 

  30. Reverberi C, Toraldo A, Serena D, et al. Better without (lateral) frontal cortex? Insight problems solved by frontal patients. Brain, 2005, 128: 2882–2890 10.1093/brain/awh577, 15975944

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Wu, L. & Luo, J. Effective connectivity of dorsal and ventral visual pathways in chunk decomposition. Sci. China Life Sci. 53, 1474–1482 (2010). https://doi.org/10.1007/s11427-010-4088-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4088-z

Keywords

Navigation