Skip to main content
Log in

Electrophysiological indicators of gesture perception

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Electroencephalography (EEG) activity in the mu frequency band (8–13 Hz) is suppressed during both gesture performance and observation. However, it is not clear if or how particular characteristics within the kinematic execution of gestures map onto dynamic changes in mu activity. Mapping the time course of gesture kinematics onto that of mu activity could help understand which aspects of gestures capture attention and aid in the classification of communicative intent. In this work, we test whether the timing of inflection points within gesture kinematics predicts the occurrence of oscillatory mu activity during passive gesture observation. The timing for salient features of performed gestures in video stimuli was determined by isolating inflection points in the hands’ motion trajectories. Participants passively viewed the gesture videos while continuous EEG data was collected. We used wavelet analysis to extract mu oscillations at 11 Hz and at central electrodes and occipital electrodes. We used linear regression to test for associations between the timing of inflection points in motion trajectories and mu oscillations that generalized across gesture stimuli. Separately, we also tested whether inflection point occurrences evoked mu/alpha responses that generalized across participants. Across all gestures and inflection points, and pooled across participants, peaks in 11 Hz EEG waveforms were detected 465 and 535 ms after inflection points at occipital and central electrodes, respectively. A regression model showed that inflection points in the motion trajectories strongly predicted subsequent mu oscillations (\({R}^{2}=0.921, p\)<0.01); effects were weaker and non-significant for low (17 Hz) and high (21 Hz) beta activity. When segmented by inflection point occurrence rather than stimulus onset and testing participants as a random effect, inflection points evoked mu and beta activity from 308 to 364 ms at central electrodes, and broad activity from 226 to 800 ms at occipital electrodes. The results suggest that inflection points in gesture trajectories elicit coordinated activity in the visual and motor cortices, with prominent activity in the mu/alpha frequency band and extending into the beta frequency band. The time course of activity indicates that visual processing drives subsequent activity in the motor cortex during gesture processing, with a lag of approximately 80 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arbib MA (2005) Interweaving protosign and protospeech: Further developments beyond the mirror. Interact Stud 6:145–171

    Article  Google Scholar 

  • Avenanti A, Bueti D, Galati G, Aglioti SM (2005) Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain. Nat Neurosci 8(7):955

    Article  CAS  PubMed  Google Scholar 

  • Bașar E (2010) Brain–body–mind in the nebulous Cartesian system: a holistic approach by oscillations. Springer, New York

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57(1):289–300

  • Bobick AF, Wilson AD (1997) A state-based approach to the representation and recognition of gesture. Pattern Anal Mach Intell IEEE Trans 19:1325–1337

    Article  Google Scholar 

  • Braadbaart L, Williams JH, Waiter GD (2013) Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation? Int J Psychophysiol 89:99–105

    Article  PubMed  Google Scholar 

  • Buchin K, Buchin M, Gudmundsson J, Löffler M, Luo J (2011) Detecting commuting patterns by clustering subtrajectories. Int J Comput Geom Appl 21:253–282

    Article  Google Scholar 

  • Cabrera ME, Novak K, Foti D, Voyles R, Wachs JP (2017) What makes a gesture a gesture? Neural signatures involved in gesture recognition. In: 2017 12th IEEE international conference on automatic face & gesture recognition (FG 2017), pp 748–753

  • Chong TT-J, Cunnington R, Williams MA, Kanwisher N, Mattingley JB (2008) fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Curr Biol 18:1576–1580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cook R, Bird G, Catmur C, Press C, Heyes C (2014) Mirror neurons: from origin to function. Behav Brain Sci 37:177–192

    Article  PubMed  Google Scholar 

  • Dahan A, Reiner M (2016) Recognition of the semantics and kinematics of gestures: neural responses to “what” and “how”? Int J Psychophysiol. https://doi.org/10.1016/j.ijpsycho.2016.10.009

  • Decety J, Grèzes J (1999) Neural mechanisms subserving the perception of human actions. Trends Cogn Sci 3:172–178

    Article  CAS  PubMed  Google Scholar 

  • Despinoy F, Bouget D, Forestier G, Penet C, Zemiti N, Poignet P, Jannin P (2016) unsupervised trajectory segmentation for surgical gesture recognition in robotic training. IEEE Trans Biomed Eng 63:1280–1291. https://doi.org/10.1109/TBME.2015.2493100

    Article  PubMed  Google Scholar 

  • Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91:176–180

    Article  PubMed  Google Scholar 

  • Engel A, Burke M, Fiehler K, Bien S, Rösler F (2008) What activates the human mirror neuron system during observation of artificial movements: bottom-up visual features or top-down intentions? Neuropsychologia 46:2033–2042

    Article  PubMed  Google Scholar 

  • Enticott PG, Johnston PJ, Herring SE, Hoy KE, Fitzgerald PB (2008) Mirror neuron activation is associated with facial emotion processing. Neuropsychologia 46:2851–2854

    Article  PubMed  Google Scholar 

  • Escalera S, Gonzàlez J, Baró X, Reyes M, Lopes O, Guyon I, Athitsos V, Escalante H (2013) Multi-modal gesture recognition challenge 2013: Dataset and results. In: Proceedings of the 15th ACM on international conference on multimodal interaction. ACM, pp 445–452

  • Filimon F, Nelson JD, Hagler DJ, Sereno MI (2007) Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. Neuroimage 37:1315–1328

    Article  PubMed  Google Scholar 

  • Gallese V, Sinigaglia C (2012) Response to de Bruin and Gallagher: embodied simulation as reuse is a productive explanation of a basic form of mind-reading. Trends Cogn Sci 16:99–100

    Article  Google Scholar 

  • Gazzola V, Keysers C (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex 1991(19):1239–1255. https://doi.org/10.1093/cercor/bhn181

    Article  Google Scholar 

  • Gazzola V, Rizzolatti G, Wicker B, Keysers C (2007) The anthropomorphic brain: the mirror neuron system responds to human and robotic actions. Neuroimage 35:1674–1684

    Article  CAS  PubMed  Google Scholar 

  • Glenberg AM, Sato M, Cattaneo L, Riggio L, Palumbo D, Buccino G (2008) Processing abstract language modulates motor system activity. Q J Exp Psychol 61:905–919

    Article  Google Scholar 

  • Herrmann CS, Grigutsch M, Busch NA (2005) 11 EEG oscillations and wavelet analysis. Event-related potentials: A methods handbook, p 229

  • Hobson HM, Bishop DV (2016) Mu suppression—a good measure of the human mirror neuron system? Cortex 82:290–310

    Article  PubMed Central  PubMed  Google Scholar 

  • Hogeveen J, Chartrand TL, Obhi SS (2014) Social mimicry enhances mu-suppression during action observation. Cereb Cortex 25:2076–2082

    Article  PubMed  Google Scholar 

  • Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286:2526–2528

    Article  CAS  PubMed  Google Scholar 

  • Kita S, van Gijn I, van der Hulst H (1998) Movement phases in signs and co-speech gestures, and their transcription by human coders. In: Wachsmuth I, Fröhlich M (eds) Gesture and sign language in human-computer interaction. GW 1997, vol 1371. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp 23–35

    Chapter  Google Scholar 

  • Kühn S, Brass M (2008) Testing the connection of the mirror system and speech: how articulation affects imitation in a simple response task. Neuropsychologia 46:1513–1521

    Article  PubMed  Google Scholar 

  • Loram ID, Gawthrop PJ, Lakie M (2006) The frequency of human, manual adjustments in balancing an inverted pendulum is constrained by intrinsic physiological factors. J Physiol 577:417–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McNeill D (1992) Hand and mind: what gestures reveal about thought. University of Chicago Press, New York

  • Muthukumaraswamy SD, Johnson BW, McNair NA (2004) Mu rhythm modulation during observation of an object-directed grasp. Cogn Brain Res 19:195–201

    Article  Google Scholar 

  • Neuper C, Scherer R, Reiner M, Pfurtscheller G (2005) Imagery of motor actions: Differential effects of kinesthetic and visual–motor mode of imagery in single-trial EEG. Cogn Brain Res 25:668–677. https://doi.org/10.1016/j.cogbrainres.2005.08.014

    Article  Google Scholar 

  • Perry A, Stein L, Bentin S (2011) Motor and attentional mechanisms involved in social interaction—evidence from mu and alpha EEG suppression. Neuroimage 58:895–904

    Article  PubMed  Google Scholar 

  • Pfurtscheller G, Neuper C, Mohl W (1994) Event-related desynchronization (ERD) during visual processing. Int J Psychophysiol 16:147–153

    Article  CAS  PubMed  Google Scholar 

  • Quandt LC, Marshall PJ, Shipley TF, Beilock SL, Goldin-Meadow S (2012) Sensitivity of alpha and beta oscillations to sensorimotor characteristics of action: an EEG study of action production and gesture observation. Neuropsychologia 50:2745–2751

    Article  PubMed Central  PubMed  Google Scholar 

  • Raos V, Umiltá MA, Murata A, Fogassi L, Gallese V (2006) Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. J Neurophysiol 95(2):709–729

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Arbib MA (1998) Language within our grasp. Trends Neurosci 21:188–194

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Sinigaglia C (2010) The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 11:264–274. https://doi.org/10.1038/nrn2805

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3:131–141

    Article  CAS  Google Scholar 

  • Streltsova A, Berchio C, Gallese V, Umilta MA (2010) Time course and specificity of sensory-motor alpha modulation during the observation of hand motor acts and gestures: a high density EEG study. Exp Brain Res 205:363–373

    Article  PubMed Central  PubMed  Google Scholar 

  • Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis computational intelligence and neuroscience, vol 2011. https://doi.org/10.1155/2011/879716(Article ID 879716)

  • Tadel F, Bock EA, Niso G, Mosher JC, Cousineau M, Pantazis D, Leahy RM, Baillet S (2019) MEG/EEG group analysis with Brainstorm. Front Neurosci 13:76

    Article  PubMed Central  PubMed  Google Scholar 

  • Théoret H, Pascual-Leone A (2002) Language acquisition: do as you hear. Curr Biol 12:R736–R737

    Article  PubMed  Google Scholar 

  • Urgen BA, Plank M, Ishiguro H, Poizner H, Saygin AP (2013) EEG theta and Mu oscillations during perception of human and robot actions. Front Neurorobotics 7:19. https://doi.org/10.3389/fnbot.2013.00019

    Article  Google Scholar 

  • Viviani P, Terzuolo C (1982) Trajectory determines movement dynamics. Neuroscience 7:431–437. https://doi.org/10.1016/0306-4522(82)90277-9

    Article  CAS  PubMed  Google Scholar 

  • Wu YC, Coulson S (2005) Meaningful gestures: electrophysiological indices of iconic gesture comprehension. Psychophysiology 42:654–667. https://doi.org/10.1111/j.1469-8986.2005.00356.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs under Award No. W81XWH-14-1-0042 (JPW is Principal Investigator). Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan P. Wachs.

Additional information

Communicated by Gay R. Holstein .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera, M.E., Novak, K., Foti, D. et al. Electrophysiological indicators of gesture perception. Exp Brain Res 238, 537–550 (2020). https://doi.org/10.1007/s00221-020-05724-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-020-05724-y

Keywords

Navigation