Skip to main content
Log in

Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Both spore and vegetative forms of Bacillus species have been used as probiotics, and they have high stability to the surrounding atmospheric conditions such as heat, gastric conditions, and moisture. The commercial Bacillus probiotic strains in use are B. cereus, B. clausii, B. coagulans, B. licheniformis, B. polyfermenticus, B. pumilus, and B. subtilis. These strains have antimicrobial, anticancer, antioxidant, and vitamin production properties. However, Bacillus probiotics can also produce toxins and biogenic amines and transfer antibiotic resistance genes; therefore, their safety is a concern. Studies on the microbiome using probiotic Bacillus strains are limited in humans. Most microbiome research has been conducted in chicken, mouse, and pig. Some Bacillus probiotics are used as fermentation starters in plant and soybean and dietary supplement of baking foods as a probiotic carrier. This review summarizes the characterization of Bacillus species as probiotics for human use and their safety, microbiome, and probiotic carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbrescia A, Palese LL, Papa S, Gaballo A, Alifano P, Sardanelli AM. Antibiotic sensitivity of Bacillus clausii strains in commercial preparation. Curr. Med. Chem. 1: 102-110 (2014)

    CAS  PubMed Central  Google Scholar 

  • Andersson A, Granum PE, Ronner U. The adhesion of Bacillus cereus spores to epithelial cells might be an additional virulence mechanism. Int. J. Food Microbiol. 39: 93-99 (1998)

    Article  CAS  PubMed  Google Scholar 

  • Bernardeau M, Lehtinene MJ, Forssten SD, Nurminen P. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J. Food Sci. Technol. 54: 2570-2584 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozdogan B, Galopin S, Leclereq R. Characterization of a new erm-related macrolide resistance gene present in probiotic strains of Bacillus clausii. Appl. Environ. Microbiol. 70: 280-284 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calzada J, del Olmo A, Picon A, Gaya P, Nunez M. Reducing biogenic-amine-producing bacteria, decarboxylase activity, and biogenic amines in raw milk cheese by high-pressure treatments. Appl. Environ. Microbiol. 79: 1277-1283 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casula G, Cutting SM. Bacillus probiotics: Spore germination in the gastrointestinal tract. Appl. Environ. Microbiol. 68: 2344-2352 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang M, Chang HC. Development of a screening method for biogenic amine producing Bacillus spp. Int. J. Food Microbiol. 153: 269-274 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Ciffo F. Determination of the spectrum of antibiotic resistance of the Bacillus subtilis strains of Enterogermina. Chemioterapia 3: 45-52 (1984)

    CAS  PubMed  Google Scholar 

  • Chon JW, Kim JH, Lee SJ, Hyeon JY, Song KY, Park C, Seo KH. Prevalence, phenotypic traits and molecular characterization of emetic toxin-producing Bacillus cereus strains isolated from human stools in Korea. J. Appl. Microbiol. 112: 1042-1049 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Chudnovskaya NV, Ribalko SL, Sorokulova IB, Smirnov VV, Belyavskaya VA. Antiviral activity of Bacillus probiotics. Dopovidi. Nac. Acad. Nauk. Ukraini. 124-126 (1995)

  • Ciprandi G, Scordamaglia A, Ruffoni S, Pizzorno G, Canonica GW. Effects of an adjunctive treatment with Bacillus subtilis for food allergy. Chemioterapia 5: 408-410 (1986)

    CAS  PubMed  Google Scholar 

  • Coton E, Coton M. Multiplex PCR for colony direct detection of gram-positive histamine-and tyramine-producing bacteria. J. Microbiol. Methods 63: 296-304 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Coton E, Coton M, Lucas P, Lonvaud A. Identification of the gene encoding a putative tyrosine decarboxylase of Carnobacterium divergens 508. Food Microbiol. 21: 125-130 (2004)

    Article  CAS  Google Scholar 

  • Cutting SM. Bacillus probiotics. Food Microbiol. 28: 214-220 (2011)

    Article  PubMed  Google Scholar 

  • Dong TC, Van PH, Cutting SM. Bacillus probiotics. Nutra Foods 8: 7-14 (2009)

    Google Scholar 

  • Duc LH, Hong HA, Barbosa TM, Henriques AO, Cutting SM. Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 70: 2161-2171 (2004)

    Article  CAS  PubMed Central  Google Scholar 

  • Endres JR, Clewell A, Jade KA, Farber T, Hauswirth J, Schauss AG. Safety assessment of a proprietary preparation of a novel probiotic, Bacillus coagulans, as a food ingredient. Food Chem. Toxicol. 47: 1231-1238 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshaghabee FM, Rokana N, Gulhane RD, Sharma C, Panwar H. Bacillus as potential probiotics: status, concerns, and future perspectives. Front. Microbiol. 8: 1490 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • EFSA (European Food Safety Authority). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 10: 2740 (2012)

  • FAO/WHO. Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation. FAO Food and Nutrition Paper World Health Organization and Food Agriculture Organization of the United Nations (2006)

  • Fiorini G, Cimminiello C, Chianese R. II B. subtilis come stimolatore selettivo delle IgA linfocitarie di membrana. Farmaci 9: 331-334 (1985)

    Google Scholar 

  • Granchi L, Talini D, Rigacci S, Guerrini A, Berti A, Vincenzini M. Detection of putrescine-producer Oenococcus oeni strains by PCR. 8th Symposium on Lactic Acid Bacteria, The Netherlands (2006)

  • Granum PE, Lund T. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 157: 223-228 (1997)

    Article  CAS  Google Scholar 

  • Green DH, Wakeley PR, Page A, Barnes A, Baccigalupi L, Ricca E, Cutting SM. Characterization of two Bacillus probiotics. Appl. Environ. Microbiol. 65: 4288-4291 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guianane CM, Cotter PD. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap. Adv. Gastroenterol. 6: 295-308 (2013)

    Article  Google Scholar 

  • Guinebretiere MH, Broussolle V, Nguyen-The C. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 40: 3053-3056 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gul O, Athalar I. Different stress tolerance of spray and freeze dried Lactobacillus casei Shirota microcapsules with different encapsulating agents. Food Sci. Biotechnol. 28: 807-816 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Hisieh YM, Sheu SJ, Chen YL, Tsen HY. Enterotoxigenic profiles and polymerase chain reaction detection of Bacillus cereus group cells and B. cereus strains from food-borne outbreaks. J. Appl. Microbiol. 87: 481-490 (1999)

  • Hoa NT, Baccigalupi L, Huxham A, Smertenko A, Van PH, Ammendola S, Ricca E, Cutting AS. Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl. Environ. Microbiol. 66: 5241-5247 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoa NT, Duc LH, Isticato R, Baccigalupi L, Ricca E, Van PH, Cutting AS. Fate and dissemination of Bacillus subtilis spores in a murine model. Appl. Environ. Microbiol. 67: 3819-3823 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong HA, Duc LH, Cutting SM. The use of bacterial spore formers as probiotics. FEMS Microbiol. Lett. 29: 813-835 (2005)

    Article  CAS  Google Scholar 

  • Hong HA, Huang JM, Khaneka R, Hiep LV, Urdaci MC, Urdaci MC, Cutting SM. The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J. Appl. Microbiol.105: 510-520 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science 292: 1115-1118 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Hyronimus B, Le Marrec C, Urdaci MC. Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I4. J. Appl. Microbiol. 85: 42-50 (1998)

    Article  CAS  PubMed  Google Scholar 

  • Jacquier V, Nelson A, Jlali M, Rhayat L, Brinch KS, Devillard E. Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance. Poult. Sci. 98: 2548-2254 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Jeon HL, Lee NK, Yang SJ, Kim WS, Paik HD. Probiotic characterization of Bacillus subtilis P223 isolated from kimchi. Food Sci. Biotechnol. 26: 1641-1648 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon HL, Yang SJ, Son SH, Kim WS, Lee NK, Paik HD. Evaluation of probiotic Bacillus subtilis P229 isolated from cheonggukjang and its application in soybean fermentation. LWT-Food Sci. Technol. 97: 94-99 (2018)

    Article  CAS  Google Scholar 

  • Jung JH, Lee MY, Chang HC. Evaluation of the probiotic potential of Bacillus polyfermenticus CJ6 isolated from Meju, a Korean soybean fermentation starter. J. Microbiol. Biotechn. 22: 1510-1517 (2012)

    Article  CAS  Google Scholar 

  • Kanmani P, Satish Kumar R, Yuvaraja N, Paaria KA, Pattukumara V, Arula V. Probiotics and its functionally valuable products—a Review. Crit. Rev. Food Sci. Nutr. 53: 641-658 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Kawai K, Kamochi R, Oiki S, Murata K, Hashimoto W. Probiotics in human gut microbiota can degrade host glycosaminoglycans. Sci. Rep. 8: 10674 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Han JK, Park JS, Lee JS, Lee SH, Cho JI, Kim KS. Various enterotoxin and other virulence factor genes widespread among Bacillus cereus and Bacillus thuringiensis strains. J. Microbiol. Biotechn. 25: 872-879 (2015)

    Article  CAS  Google Scholar 

  • Kim SM, Lee KH, Lee NK, Kim CJ, Kim CH, Paik HD. Antagonistic activity of polyfermenticin SCD against Helicobacter pylori KCTC 2948. J. Microbiol. Biotechn. 14: 148-152 (2004)

    CAS  Google Scholar 

  • Kotiranta A, Lounatmaa K, Haapasalo M. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2: 189-198 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Landete JM, Ferrer S, Polo L, Pardo I. Biogenic amines in wines from three Spanish regions. J. Agric. Food Chem. 53: 1119-1124 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Jun KD, Kim WS, Paik HD. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett. Appl. Microbiol. 32: 146-151 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Lee MS, Lee NK, Chang KH, Choi SY, Song CK, Paik HD. Isolation and characterization of a protease-producing bacterium, Bacillus amyloliquefaciens P27 from meju as a probiotic starter for fermented meat products. Korean J. Food Sci. An. (2010)

  • Lee NK, Paik HD. Bioconversion using lactic acid bacteria: Ginsenosides, GABA, and phenolic compounds. J. Microbiol. Biotechn. 27: 869-877 (2017)

    Article  CAS  Google Scholar 

  • Lee NK, Son SH, Jeon EB, Jung GH, Lee JY, Paik HD. The prophylactic effect of probiotic Bacillus polyfermenticus KU3 against cancer cells. J. Funct. Foods 14: 513-518 (2015)

    Article  CAS  Google Scholar 

  • Le Marrec C, Hyronimus B, Bressollier P, Verneuil B, Urdaci MC. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I4. Appl. Environ. Microbiol. 66: 5213-5220 (2000)

    Article  PubMed  PubMed Central  Google Scholar 

  • Linares DM, del Rio B, Redruello B, Ladero V, Martin MC, Fernandez M, Ruas-Madiedo P, Alvarez MA. Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chem. 197: 658-663 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Lucas PM, Blancato VS, Claisse O, Magni C, Lolkema JS, Lonvaud-Funel A. Agmatine deiminase pathway genes in Lactobacillus brevis are linked to the tyrosine decarboxylation operon in a putative acid resistance locus. Microbiology 153: 2221-2230 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Ma EL, Choi YJ, Choi J, Pothoulakis C, Rhee SH, Im EE. The anti-cancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int. J. Cancer 127: 780-790 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Wang W, Zhang H, Wang J, Zhang W, Gao J, Wu S, Qi G. Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Sci. Rep. 8: 15358 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandel DR, Eichas K, Holmes J. Bacillus coagulans: A viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial. BMC Complement. Altern. Med. 10: 1 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marseglia GL, Tosca M, Cirillo I, Licari A, Leone M, Marseglia A, Castellazzi AM, Ciprandi G. Efficacy of Bacillus clausii spores in the prevention of recurrent respiratory infections in children: a pilot study. Ther. Clin. Risk Manag. 3: 13-17 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  • Matarante A, Baruzzi F, Cocconcelli PS, Morea M. Genotyping and toxigenic potential of Bacillus subtilis and Bacillus pumilus strains occurring in industrial and artisanal cured sausages. Appl. Environ. Microbiol. 70: 5168-5176 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazza P. The use of Bacillus subtilis as an antidiarrhoeal microorganism. Boll. Chim. Farm. 133: 3-18 (1994)

    CAS  PubMed  Google Scholar 

  • Muscettola M, Grasso G, Blach-Olszewska Z, Migliaccio P, Borghesi-Nicoletti C, Giarratana M, Gallo VC. Effects of Bacillus subtilis spores on interferon production. Pharmacol Res. 2: 176-177 (1992)

    Article  Google Scholar 

  • Naila A, Flint S, Feltcher G, Bremer P, Meerdink G. Control of biogenic amines in food—existing and emerging approaches. J. Food Sci. 75: R139-R150 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan C, Arora R, Khalilullah M. Preliminary observation on effect of Lactobacillus sporogenes on serum lipid levels in hypercholesterolemic patients. Indian J. Med. Res. 92: 431-432 (1990)

    CAS  PubMed  Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64: 548-572 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nista EC, Candelli M, Cremonini F, Cazzato IA, Zocco MA, Franceschi F, Cammarota G, Gasbarrini G, Gasbarrini A. Bacillus clausii therapy to reduce side-effects of anti-Helicobacter pylori treatment: randomized, double-blind, placebo controlled trial. Aliment. Pharmacol. Ther. 20: 1181-1188 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Olmos J, Paniagua-Michel J. Bacillus subtilis a potential probiotic bacterium to formulate functional feeds for aquaculture. J. Microb. Biochem. Technol. 6: 361-365 (2014)

    Article  CAS  Google Scholar 

  • Paik HD, Park JS, Park E. Effects of Bacillus polyfermenticus SCD on lipid and metabolisms in rats fed a high-fat and high-cholesterol diet. Biol. Pharm. Bull. 28: 1270-1274 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Park KY, Jung HY, Woo KL, Jun KD, Kang JS, Paik HD. Effects of Bacillus polyfermenticus SCD administration on fecal microflora and putrefactive metabolites in healthy adults. J. Microbiol. Biotechn. 12: 657-663 (2003)

    Google Scholar 

  • Patrone V, Molinari P, Morelli L. Microbiological and molecular characterization of commercially available probiotics containing Bacillus clausii from India and Pakistan. Int. J. Food Microbiol. 237: 92-97 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Pinchuk IV, Bressollier P, Verneuil B, Fenet B, Sorokulova IB, Mégraud F, Urdaci MC. In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrob. Agents Chemother. 45: 3156-3161 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirker A, Stockenhuber A, Remely M, Harrant A, Hippe B, Kamhuber C, Adelmann K, Stockenhuber F, Haslberger AG. Effects of antibiotic therapy on the gastrointestinal microbiota and the influence of Lactobacillus casei. Food Agric. Immunol. 24: 315-330 (2013)

    Article  CAS  Google Scholar 

  • Poulsen ASR, de Jonge N, Nielsen JL, Højberg O, Lauridsen C, Lauridsen S, Cutting SM, Canibe N. Impact of Bacillus spp. spores and gentamicin on the gastrointestinal microbiota of suckling and newly weaned piglets. PLOS ONE 13: e0207382 (2018)

  • Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnel PWJ. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 39: 763-871 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders ME, Morelli L, Tompkins TA. Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr. Rev. Food Sci. Food Saf. 2: 101-110 (2003)

    Article  Google Scholar 

  • SCAN. Opinion of the scientific committee on animal nutrition on the safety of use of Bacillus species in animal nutrition. European commission, health and consumer protection directorate-general. Scientific Committee on Animal Nutrition (SCAN) (2000)

  • Sorokulova I. Modern status and perspectives of Bacillus bacteria as probiotics. J. Prob. Health. 1: 4 (2013)

    Article  Google Scholar 

  • Sorokulova IB, Pinchuk IV, Denayrolles M, Osipova IG, Huang JM, Cutting SM, Urdaci MC. The safety of two Bacillus probiotic strains for human use. Dig. Dis. Sci. 53: 954-963 (2008)

    Article  PubMed  Google Scholar 

  • Spano G, Russo P, Lonvaud-Funel A, Lucas P, Alexandre H, Grandvalet C, Coton E, Coton E, Barnavon L, Bach B, Rattray F, Bunte A, Magni C, Ladero V, Alvarez M, Fernńndez M, Lopez P, de Palencia PF, Corbi A, Trip H, Lolkema JS. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 64: S95-S100 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Starosila D, Rybalko S, Varbanetz L, Ivanskaya N, Sorokulova I. Anti-influenza activity of Bacillus subtilis probiotic strain. Antimicrob. Agents Chemother. 61: 1-11 (2017)

    Article  Google Scholar 

  • Stenfors Arnesen LP, Fagerlude A, Granum PE. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579-606 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Suvarna S, Dsouza J, Ragavan ML, Das N. Potential probiotic characterization and effect of encapsulation of probiotic yeast strains on survival in simulated gastrointestinal tract condition. Food Sci. Biotechnol. 27: 745-753 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swapna B, Venkatrayulu Ch, Swathi AV. Effect of probiotic bacteria Bacillus licheniformis and Lactobacillus rhamnosus on growth of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931). Euro. J. Exp. Bio. 5: 31-36 (2015)

    CAS  Google Scholar 

  • Thursby E, Juge N. Introduction to the human gut microbiota. Biochem. J. 474: 1832-1836 (2017)

    Article  CAS  Google Scholar 

  • Wang H, Huang J, Sun L, Xu F, Zhang W, Zhan J. An efficient process for co-production of γ-aminobutyric acid and probiotic Bacillus subtilis cells. Food Sci. Biotechnol. 28: 155-163 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Yang HJ, Kwon DY, Kim HJ, Kim MJ, Jung DY, Kang HJ, Kim DS, Kang S, Moon NR, Shin BK, Park S. Fermenting soybeans with Bacillus licheniformis potentiates their capacity to improve cognitive function and glucose homeostaisis in diabetic rats with experimental Alzheimer’s type dementia. Eur. J. Nutr. 51: 77-88 (2015)

    Article  CAS  Google Scholar 

  • Zhang YJ, Li S, Gan RY, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on human health and diseases. Int. J. Mol. Sci. 16: 7493-7519 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu K, Hölzel CS, Cui Y, Mayer R, Wang Y, Dietrich R, Didier A, Bassitta R, Märtlbauer E, Ding S. Probiotic Bacillus cereus strains, a potential risk for public health in China. Front. Microbiol. 7: 718 (2016)

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Dong Paik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, NK., Kim, WS. & Paik, HD. Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food Sci Biotechnol 28, 1297–1305 (2019). https://doi.org/10.1007/s10068-019-00691-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-019-00691-9

Keywords

Navigation