Skip to main content
Log in

Mutagenic and cytotoxic activities of Limonium globuliferum methanol extracts

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Unmonitored use of plant extractions alone or in combination with drugs may cause important health problems and toxic effects. Limonium (Plumbaginaceae) plants are known as antibacterial, anticancer and antivirus agent. But it is possible that this genus may have toxic effects. This study evaluated the mutagenic and cytotoxic effects of Limonium globuliferum (Boiss. et Heldr.) O. Kuntze (Plumbaginaceae) acetone/methanol (2:1), and methanol extracts of root, stem, and leaf. Different parts of this species were used in order to compare the mutagenic and cytotoxic effects of these parts. Ames test was carried out with S. typhimurium TA98, and TA100 strains. Strains were incubated at 37 °C for 72 h. MDBK cell line was used in MTT test. 10,000, 1000, 100, 10, 1 and 0.1 µg/plate concentrations of plant extracts were used in Ames test. 50, 25, 12.5, 6.25 and 3.125 µg/ml concentrations of root, stem and leaf acetone/methanol (2:1) and methanol extracts were used in MTT test. Ames test results indicated that only methanol leaf extract (10,000 µg/plate) had mutagenic activity. L. globuliferum root methanol extracts (3.125 and 6.25 µg/ml) increased the proliferation rates. Root acetone/methanol (2:1) extracts were found highly cytotoxic in all treatments. The results indicated that leaf extracts had lower cytotoxic effects than root and stem extracts. High concentrations of L. globuliferum stem and leaf methanol extracts showed cytotoxic activity in all treatment periods while low concentrations of the stem methanol extracts increased the proliferation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aithal BK, Kumar MR, Rao BN, Udupa N, Rao BS (2009) Juglone, a naphthoquinone from walnut, exerts cytotoxic and genotoxic effects against cultured melanoma tumor cells. Cell Biol Int 33:1039–1049

    Article  CAS  Google Scholar 

  • Ali NAA, Mothana R, Ghaleb N, Lindequist U (2007) Screening of traditionally used endemic soqotraen plants for cytotoxic activity. Afr J Tradit CAM 4:529–531

    Google Scholar 

  • Avaz S (2010) Afyonkarahisar’da doğal olarak yetişen Limonium Mill. türlerinin antimikrobiyal aktiviteleri. Afyon, Turkey: Dissertation, Afyon Kocatepe University

  • Babula P, Adam V, Kizek R, Sladky Z, Havel L (2009) Naphthoquinones as allelochemical triggers of programmed cell death. Environ Exp Bot 65:330–337

    Article  CAS  Google Scholar 

  • Betancur-Galvis A, Saez J, Granados H, Salazar A (1999) Antitumor and antiviral activity of Colombian medicinal plant extracts. Mem Inst 94:531–535

    Article  CAS  Google Scholar 

  • Bingwen W, Rong Z, Siqing S (1994) Limonium bicolor mechanism of hemostatic effect. J Xi’an Med Univ 15:59–60

    Google Scholar 

  • Chaung SS, Lin CC, Lin J (2003) The hepatoprotective effects of Linonium sinense against carbontetrachloride and beta-D-galactosamine intoxicatiom in rats. J Phytother Res 17:784–785

    Article  Google Scholar 

  • Chen Xinmin Z (1991) Limonium bicolor on chemical constituents. J Chin Herb Med 22:390–391

    Google Scholar 

  • Chen K, Ni L (2004) Limonium bicolor polysaccharide structural characterization of the inhibition of Hela cells. J High Chim Sin 25:2034–2035

    Google Scholar 

  • Davis PH, Mill RR, Tan K (1982) Limonium Miller. In: Davis PH, Mill RR, Tan K (eds) Flora of Turkey and the East Aegean Islands. Edinburgh Univ. Press, Edinburgh, pp 465–477

    Google Scholar 

  • Dean BJ, Brooks TM, Hodson-Walker G, Hutson DH (1985) Genetic toxicology testing of 41 industrial chemicals. Mutat Res 153:57–77

    Article  CAS  Google Scholar 

  • Durga R, Sridhar P, Polasa H (1992) Antimutagenic activity of plumbagin in Ames Salmonella typhimurium test. Ind J Med Res Sect B 96:143–145

    CAS  Google Scholar 

  • Edenharder R, Tang X (1997) Inhibition of the mutagenicity of 2-nitrofluorene, 3-nitrofluoranthene and 1-nitropyrene by flavonoids, coumarins, quinones and other phenolic compounds. Food Chem Toxicol 35:357–372

    Article  CAS  Google Scholar 

  • Farr SB, Natvig DO, Kogoma T (1985) Toxicity and mutagenicity of plumbagin and the induction of a possible new DNA repair pathway in Escherichia coli. J Bacteriol 164:1309–1316

    CAS  Google Scholar 

  • Fowler BA, Kleinow KM, Squibb KS, Lucier GW, Hayes W (1994) Organelles as tools in toxicology. In: Hayes AW (ed) Principles and methods of toxicology. Raven Press, New York, pp 1201–1230

    Google Scholar 

  • Gadano AB, Gumi AA, Carballo MA (2006) Argentine folk medicine: genotoxic effects of Chenopodiaceae family. J Ethnopharmacol 103:246–251

    Article  CAS  Google Scholar 

  • Hakura A, Mochida H, Tsutsui Y, Yamatsu K (1994) Mutagenicity and cytotoxicity of naphthoquinones for Ames Salmonella tester strains. Chem Res Toxicol 7:559–567

    Article  CAS  Google Scholar 

  • Hannan MA, Al-dakan AA, Aboul-enein HY, Al-othaimeen AA (1989) Mutagenic and antimutagenic factor(s) extracted from a desert mushroom using different solvents. Mutagenesis 4:111–114

    Article  CAS  Google Scholar 

  • Kada T, Morita K, Inoue T (1978) Antimutagenic action of vegetable factor(s) on the mutagenic principle of tryptophan pyrolysate. Mutat Res 53:351–354

    Article  CAS  Google Scholar 

  • Kong N, Fang S, Wang J, Wang Z, Xia C (2014) Two new flavonoid glycosides from the halophyte Limonium franchetii. J Asian Nat Prod Res 16:370–375

    Article  CAS  Google Scholar 

  • Krishnaraju AV, Rao TVN, Sundararaju D, Vanisree M, Tsay H, Subbaraju GV (2006) Biological screening of medicinal plants collected from Eastern Ghats of India using Artemia salina (Brine Shrimp Test). Int J Appl Sci Eng 4:115–125

    Google Scholar 

  • Kuo Y, Lin LC, Tsai WJ (2002) Samarangenin B from Limonium sinense suppresses herpes simplex virus type l. J Antimicrob Chemother 46:2854–2855

    Article  CAS  Google Scholar 

  • Lewis DF, Ioannide C, Parke DV (1993) Validation of a novel molecular orbital approach (COMPACT) for the prospective safety evaluation of chemicals, by comparison with rodent carcinogenicity and Salmonella mutagenicity data evaluated by the U.S. NCI/NTP. Mutat Res 291:61–77

    Article  CAS  Google Scholar 

  • Lin LC, Chou CJ (2000) Flavonoids and phenolics from Limonium sinense. J Planta Med 66:382–383

    Article  CAS  Google Scholar 

  • Lin LC, Kuo CJ (2000) Anti-herpes simplex virus type-l flavonoids a new flavanone from the root of Limonium sinense. J Planta Med 66:333–334

    Article  CAS  Google Scholar 

  • Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215

    Article  CAS  Google Scholar 

  • Matsushima T, Muramatsu M, Yagame O, Araki A, Tikkanen L, Natori S (1986) Mutagenicity and chemical structure relations of naturally occurring mutagens from plants. In: Ramel C, Lambert B, Magnusso J (eds) Progress in clinical and biological research. Genetic toxicology of environmental chemicals, part B: genetic effects and applied mutagenesis; 4th international conference on environmental mutagens. Alan R. Liss, Inc., New York, p133–140

  • Morita K, Hara M, Kada T (1978) Studies on natural desmutagens: screening for vegetable and fruit factors active in inactivation of mutagenic pyrolysis products from amino acids. Agric Biol Chem 42:1235–1238

    CAS  Google Scholar 

  • Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455:29–60

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colonmetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 65:55–63

    Article  CAS  Google Scholar 

  • Moustafa SMA, Menshawi BM, Wassel GM, Mahmoud K, Mounier MM (2014) Screening of some plants in Egypt for their cytotoxicity against four human cancer cell lines. Int J Pharm Tech Res 6:1074–1084

    Google Scholar 

  • Nakamura H, Yamamoto T (1982) Mutagen and anti-mutagen in ginger, Zingiber officinale. Mutat Res 103:119–126

    Article  CAS  Google Scholar 

  • Poppenga RH (2002) Herbal medicine: potential for intoxication and interactions with conventional drugs. Clin Tech Pract 17:6–18

    Google Scholar 

  • Santhakumari G, Saralamma PG, Radhakrishnan N (1980) Effect of plumbagin on cell growth and mitosis. Indian J Exp Biol 18:215–218

    CAS  Google Scholar 

  • Sarkar D, Sharma A (1996) Plant extracts as modulators of genotoxic effects. Bot Rev 62:279–280

    Article  Google Scholar 

  • Seibert H, Balls M, Fentem JH, Bianchi V, Clothier RH, Dierickx PJ, Ekwall B, Garle MJ, Gomez-Lechon MJ, Gribaldo L, Gulden M, Liebsch M, Rasmussen E, Roguet R, Shrivastava R, Walum E (1996) Acute toxicity testing in vitro and the classification and labelling of chemicals. Altern Lab Anim 24:499–510

    Google Scholar 

  • Seo Y, Lee H, Ah Kim Y, Youn HJ, Lee B (2005) Effects of several salt marsh plants on mouse spleen and thymus cell proliferation using MTT assay. Ocean Sci J 40:209–212

    Article  Google Scholar 

  • Simaan JA (2009) Herbal medicine, what physicians need to know. Leban Med J 57:215–217

    Google Scholar 

  • Sirohi SK, Pandey N, Goel N, Singh B, Mohini M, Pandey P, Chaudhry PP (2009) Microbial activity and ruminal methanogenesis as affected by plant secondary metabolites in different plant extracts. Int J Civil Environ Eng 1:52–58

    Google Scholar 

  • WHO (1985) The WHO traditional medicine programme: policy and implementation. Int Tradit Med News 1:1–5

    Google Scholar 

  • Yang E, Yim E, Song G, Kim G, Hyun C (2009) Inhibition of nitric oxide production in lipopolysaccharide-activated RAW 264.7 macrophages by Jeju plant extracts. Interdiscip Toxicol 2:245–249

    Article  Google Scholar 

  • Yu-Ying Z (1997) Limonium research water-compounds. J Northwest Pharm J 12:135–136

    Google Scholar 

  • Zhen-fa X, Liang Z (1991) Limonium sinense in mice with hemorrhagic anemia Limonium sinense main component analysis. J Shantou Univ 6:78–79

    Google Scholar 

  • Zhu G, Jiu-rong Y (1994) Limonium sinense chemical constituents. J Chin Herb Med 25:398–399

    Google Scholar 

  • Zia S, Khan MA (2004) Effect of light, salinity, and temperature on seed germination of Limonium stocksii. Can J Bot 82:151–157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasin Eren.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eren, Y. Mutagenic and cytotoxic activities of Limonium globuliferum methanol extracts. Cytotechnology 68, 2115–2124 (2016). https://doi.org/10.1007/s10616-016-9951-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-9951-8

Keywords

Navigation