Skip to main content
Log in

Biotechnological production of itaconic acid—things you have to know

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Itaconic acid is one of the basic chemicals for the polymer industry, which can be produced on the basis of renewable raw materials. Since the middle of the twentieth century, itaconic acid has been produced industrially using the filamentous fungus Aspergillus terreus. But the demand for the organic acid is low due to the high production costs compared to alternative petrochemical manufactured raw materials. The high production costs are based on a low final titer, low productivities, and the usage of pure sugars, purified molasses, or starch hydrolysates, since the fungus reacts very sensitively to impurities in a culture medium. This review provides a comprehensive overview of the most recent developments, including a spectrum of studied microorganisms and their capabilities for the production of itaconic acid. The technological achievements in the biotechnological production of itaconic acid are presented. Particular attention is paid to current achievements in terms of suitable alternative substrates and their applicability in fermentation processes. Also, the pathway of itaconic acid and especially the influences on the fermentation process, which must be known in order to achieve a high final titer of itaconic acid, a yield close to the theoretical yield, and high productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J, Springer J (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A 77(7):3957–3961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum S, Tripathi S, Singh N, Gupta KS (2016) Reactive extraction a boom for itaconic acid: a review. Int J Recent Sci Res 7(5):11372–11376

    Google Scholar 

  • Batti M, Schweiger LB (1963) Process for the production of itaconic acid. United States Patent 3 078 217

  • Baup S (1837) Über eine neue Pyrogen- Citronensäure, und über Benennung der Pyrogen Säure überhaupt. Ann Chim Phys 19:29–38

    Google Scholar 

  • Begerow D, Stoll M, Bauer R (2006) A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia 98(6):906–916

    Article  PubMed  Google Scholar 

  • BioConSept (2016) Final report summary—BIOCONSEPT (integration of bio-conversion and separation technology for the production and application of platform chemicals from 2nd generation biomass). Project ID: 289194; funded under: FP7-KBBE

  • Blazeck J, Hill A, Jamoussi M, Pan A, Miller J, Alper HS (2015) Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab Eng 32:66–73. https://doi.org/10.1016/j.ymben.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  • Blazeck J, Miller J, Pan A, Gengler J, Holden C, Jamoussi M, Alper HS (2014) Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl Microbiol Biot 98(19):8155–8164. https://doi.org/10.1007/s00253-014-5895-0

    Article  CAS  Google Scholar 

  • Blumhoff ML, Steiger MG, Mattanovich D, Sauer M (2013) Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus niger. Metab Eng 19:26–32. https://doi.org/10.1016/j.ymben.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  • Bölker M (2001) Ustilago maydis—a valuable model system for the study of fungal dimorphism and virulence. Microbiol-Sgm 147:1395–1401

    Article  Google Scholar 

  • Bölker M, Basse CW, Schirawski J (2008) Ustilago maydis secondary metabolism—from genomics to biochemistry. Fungal Genet Biol 45:S88–S93

    Article  PubMed  CAS  Google Scholar 

  • Bonnarme P, Gillet B, Sepulchre AM, Role C, Beloeil JC, Ducrocq C (1995) Itaconate biosynthesis in Aspergillus-terreus. J Bacteriol 177(12):3573–3578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calam CT (1939) Studies in the biochemistry of microorganisms. XXIII. Itaconic acid, a metabolic product of Aspergillus terreus Thom. Biochem J 33:1488–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carstensen F, Klement T, Buchs J, Melin T, Wessling M (2013) Continuous production and recovery of itaconic acid in a membrane bioreactor. Bioresour Technol 137:179–187. https://doi.org/10.1016/j.biortech.2013.03.044

    Article  CAS  PubMed  Google Scholar 

  • Chin T, Sano M, Takahashi T, Ohara H, Aso Y (2015) Photosynthetic production of itaconic acid in Synechocystis sp PCC6803. J Biotechnol 195:43–45. https://doi.org/10.1016/j.jbiotec.2014.12.016

    Article  CAS  PubMed  Google Scholar 

  • Choudhary AQ, Pirt SJ (1966) The influence of metal-complexing agents on citric acid production by Aspergillus niger. J Gen Microbiol 43(1):71–81. https://doi.org/10.1099/00221287-43-1-71

    Article  CAS  PubMed  Google Scholar 

  • Clark DS, Ito K, Horitsu H (1966) Effect of manganese and other heavy metals on submerged citric acid fermentation of molasses. Biotechnol Bioeng 8(4):465–471

    Article  CAS  Google Scholar 

  • Cros P, Schneider D (1993) Microbiological production of itaconic acid. United States Patent 5 231 016

  • Deak E, Wilson SD, White E, Carr JH, Balajee SA (2009) Aspergillus terreus accessory conidia are unique in surface architecture, cell wall composition and germination kinetics. PLoS One 4(10):e7673. https://doi.org/10.1371/journal.pone.0007673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delidovich I, Hausoul PJ, Deng L, Pfutzenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116(3):1540–1599. https://doi.org/10.1021/acs.chemrev.5b00354

    Article  CAS  PubMed  Google Scholar 

  • Durant Y (2009) Development of integrated production of polyitaconic acid from northeast hardwood biomass—NIFA project 2009–2012. Technical report, Itaconix, LCC

    Google Scholar 

  • Dwiarti L, Otsuka M, Miura S, Yaguchi M, Okabe M (2007) Itaconic acid production using sago starch hydrolysate by Aspergillus terreus TN484-M1. Bioresour Technol 98(17):3329–3337. https://doi.org/10.1016/j.biortech.2006.03.016

    Article  CAS  PubMed  Google Scholar 

  • Dwiarti L, Yamane K, Yamatani H, Kahar P, Okabe M (2002) Purification and characterization of cis-aconitic acid decarboxylase from Aspergillus terreus TN484-M1. J Biosci Bioeng 94(1):29–33

    Article  CAS  PubMed  Google Scholar 

  • Eimhjellen KE, Larsen H (1955) Mechanism of itaconic acid formation by Aspergillus-terreus. 2. Effect of substrates and inhibitors. Biochem J 60(1–4):139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs G, Schlegel HG (2006) Allgemeine Mikrobiologie. Thieme Flexible Taschenbücher, Thieme Georg Verlag

    Google Scholar 

  • Geiser E, Przybilla SK, Friedrich A, Buckel W, Wierckx N, Blank LM, Bolker M (2016a) Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. Microb Biotechnol 9(1):116–126. https://doi.org/10.1111/1751-7915.12329

    Article  CAS  PubMed  Google Scholar 

  • Geiser E, Przybilla SK, Engel M, Kleineberg W, Buttner L, Sarikaya E, Hartog TD, Klankermayer J, Leitner W, Bolker M, Blank LM, Wierckx N (2016b) Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production. Metab Eng 38:427–435. https://doi.org/10.1016/j.ymben.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  • Geiser E, Wiebach V, Wierckx N, Blank LM (2014) Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. Fungal Biol Biotechnol 1(1):2. https://doi.org/10.1186/s40694-014-0002-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Guevara ED, Tabuchi T (1990) Production of 2-hydroxyparaconic and itatartaric acids by Ustilago cynodontis and simple recoyery process of the acids. Agric Biol Chem 54(9):2359–2365

    Google Scholar 

  • Guevarra ED, Tabuchi T (1990) Accumulation of itaconic, 2-hydroxyparaconic, itatartaric, and malic-acids by strains of the genus Ustilago. Agric Biol Chem 54(9):2353–2358

    CAS  Google Scholar 

  • Gyamerah M (1995a) Factors affecting the growth form of Aspergillus terreus NRRL 1960 in relation to itaconic acid fermentation. Appl Microbiol Biot 44(3–4):356–361

    Article  CAS  Google Scholar 

  • Gyamerah MH (1995b) Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Appl Microbiol Biot 44(1–2):20–26

    Article  Google Scholar 

  • Harder BJ, Bettenbrock K, Klamt S (2016) Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metab Eng 38:29–37. https://doi.org/10.1016/j.ymben.2016.05.008

    Article  CAS  PubMed  Google Scholar 

  • Haskins RH, Thorn JA, Boothroyd B (1955) Biochemistry of the Ustilaginales. 11. Metabolic products of Ustilago zeae in submerged culture. Can J Microbiol 1(9):749–756

    Article  CAS  PubMed  Google Scholar 

  • Hevekerl A (2016) Biotechnisch erzeugte Itaconsäure. Cuvillier Verlag

  • Hevekerl A, Kuenz A, Vorlop K-D (2014a) Filamentous fungi in microtiter plates—an easy way to optimize itaconic acid production with Aspergillus terreus. Appl Microbiol Biot:1–7 doi:https://doi.org/10.1007/s00253-014-5743-2

  • Hevekerl A, Kuenz A, Vorlop KD (2014b) Influence of the pH on the itaconic acid production with Aspergillus terreus. Appl Microbiol Biot 98(24):10005–10012. https://doi.org/10.1007/s00253-014-6047-2

    Article  CAS  Google Scholar 

  • Hewald S, Josephs K, Bolker M (2005) Genetic analysis of biosurfactant production in Ustilago maydis. Appl Environ Microb 71(6):3033–3040

    Article  CAS  Google Scholar 

  • Holzhäuser FJ, Artz J, Palkovits S, Kreyenschulte D, Büchs J, Palkovits R (2017) Electrocatalytic upgrading of itaconic acid to methylsuccinic acid using fermentation broth as a substrate solution. Green Chem 19(10):2390–2397. https://doi.org/10.1039/C6GC03153F

    Article  Google Scholar 

  • Hossain AH, Li A, Brickwedde A, Wilms L, Caspers M, Overkamp K, Punt PJ (2016) Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger. Microb Cell Factories 15(1):130. https://doi.org/10.1186/s12934-016-0527-2

    Article  CAS  Google Scholar 

  • Huang XN, Chen M, Li JJ, Lu XF (2016) Establishing an efficient gene-targeting system in an itaconic-acid producing Aspergillus terreus strain. Biotechnol Lett 38(9):1603–1610. https://doi.org/10.1007/s10529-016-2143-y

    Article  CAS  PubMed  Google Scholar 

  • Jaklitsch WM, Kubicek CP, Scrutton MC (1991) The subcellular organization of itaconate biosynthesis in Aspergillus terreus. J Gen Microbiol 137:533–539

    Article  CAS  Google Scholar 

  • Jeon HG, Cheong DE, Han Y, Song JJ, Choi JH (2016) Itaconic acid production from glycerol using Escherichia coli harboring a random synonymous codon-substituted 5'-coding region variant of the cadA gene. Biotechnol Bioeng 113(7):1504–1510. https://doi.org/10.1002/bit.25914

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Quero A, Pollet E, Zhao M, Marchioni E, Averous L, Phalip V (2016) Itaconic and fumaric acid production from biomass hydrolysates by Aspergillus strains. J Microbiol Biotechnol 26(9):1557–1565. https://doi.org/10.4014/jmb.1603.03073

    Article  CAS  PubMed  Google Scholar 

  • Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juy MI, Orejas JA, Lucca ME (2010) Study of itaconic acid production by Aspergillus terrus MJL05 strain with different variable. Rev Colom Biotechnol 12:187–193

    CAS  Google Scholar 

  • Kamper J, Kahmann R, Bolker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Muller O, Perlin MH, Wosten HAB, de Vries R, Ruiz-Herrera J, Reynaga-Pena CG, Snetselaar K, McCann M, Perez-Martin J, Feldbrugge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, Gonzalez-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Munch K, Rossel N, Scherer M, Vranes M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho ECH, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li WX, Sanchez-Alonso P, Schreier PH, Hauser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schluter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Guldener U, Munsterkotter M, Haase D, Oesterheld M, Mewes HW, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444(7115):97–101

    Article  PubMed  CAS  Google Scholar 

  • Kanamasa S, Dwiarti L, Okabe M, Park EY (2008) Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl Microbiol Biot 80(2):223–229. https://doi.org/10.1007/s00253-008-1523-1

    Article  CAS  Google Scholar 

  • Kane J, Finlay A, Amann P (1945) Production of itaconic acid. United States Patent 2 385 283

  • Karaffa L, Diaz R, Papp B, Fekete E, Sandor E, Kubicek CP (2015) A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus. Appl Microbiol Biot 99(19):7937–7944. https://doi.org/10.1007/s00253-015-6735-6

    Article  CAS  Google Scholar 

  • Kawamura D, Furuhashi M, Saito O, Matsui H (1981) Japan Patent 56 137 893

  • Kim J, Seo HM, Bhatia SK, Song HS, Kim JH, Jeon JM, Choi KY, Kim W, Yoon JJ, Kim YG, Yang YH (2017) Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli. Sci Rep 7:39768. https://doi.org/10.1038/srep39768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita K (1932) Über die Produktion von Itaconsäure und Mannit durch einen neuen Schimmelpilz, Aspergillus itaconicus. Acta Phytochimica 5:271–287

    Google Scholar 

  • Klement T, Büchs J (2013) Itaconic acid—a biotechnological process in change. Bioresour Technol 135:422–431. https://doi.org/10.1016/j.biortech.2012.11.141

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T (1971) Process for recovering itaconic acid and salts thereof from fermented broth. Japan Patent 3 621 053

  • Kobayashi T (1978) Production of itaconic acid from wood waste. Process Biochem 13(5):15–22

    CAS  Google Scholar 

  • Kobayashi T, Nakamura I, Nakagawa M (1972) Process design for itaconic acid fermentation. Proc IV IFS: Ferm Technol today. 215–221

  • Kobayashi T, Nakamura I, Nakagawa M (1973) Itaconic acid production. Japan Patent 48 092 584

  • Kobayashi T, Nakamura I, Nakagawa M (1980) Itaconic acid production. Japan Patent 51 028 711

  • Krull S, Eidt L, Hevekerl A, Kuenz A, Prüße U (2017a) Itaconic acid production from wheat chaff by Aspergillus terreus. Process Biochem 63:169–176. https://doi.org/10.1016/j.procbio.2017.08.010

    Article  CAS  Google Scholar 

  • Krull S, Hevekerl A, Kuenz A, Prüße U (2017b) Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers. Appl Microbiol Biot 101:4063–4072. https://doi.org/10.1007/s00253-017-8192-x

    Article  CAS  Google Scholar 

  • Kück U, Nowrousian M, Reiß J, Hoff B, Engh I (2009) Schimmelpilze: Lebensweise, Nutzen, Schaden, Bekämpfung. Springer

  • Kuenz A (2008) Itaconsäureherstellung aus nachwachsenden Rohstoffen als Ersatz für petrochemisch hergestellte Acrylsäure. PhD thesis, Technical University of Braunschweig

  • Kuenz A, Gallenmüller Y, Willke T, Vorlop K-D (2012) Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biot 96(5):1209–1216. https://doi.org/10.1007/s00253-012-4221-y

    Article  CAS  Google Scholar 

  • Kumar S, Krishnan S, Samal SK, Mohanty S, Nayak SK (2017) Itaconic acid used as a versatile building block for the synthesis of renewable resource-based resins and polyesters for future prospective: a review. Polym Int 66(10):1349–1363. https://doi.org/10.1002/pi.5399

    Article  CAS  Google Scholar 

  • Lai LST, Hung CS, Lo CC (2007) Effects of lactose and glucose on production of itaconic acid and lovastatin by Aspergillus terreus ATCC 20542. J Biosci Bioeng 104(1):9–13

    Article  CAS  PubMed  Google Scholar 

  • Lambert RJ, Stratford M (1999) Weak-acid preservatives: modelling microbial inhibition and response. J Appl Microbiol 86(1):157–164

    Article  CAS  PubMed  Google Scholar 

  • Larsen H, Eimhjellen K (1955) The mechanism of itaconic acid formation by Aspergillus terreus. 1. The effect of acidity. Biochem J 60(1):135–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeafDutchDNO (2015a) Leaf Technologies and Dutch DNA Biotech enter in R&D collaboration for the development of a value added fermentation solution to produce itaconic acid. http://www.lesaffre.com/wp-content/uploads/2015/10/PR_LeafDutchDNO_EN.pdf. Accessed 22.12.2017

  • LeafDutchDNO (2015b) LEAF Technologies partners with Dutch DNA to produce itaconic acid. Int Sugar J 117(1403):783–783

    Google Scholar 

  • Levinson WE, Kurtzman CP, Kuo TM (2006) Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzyme Microb Tech 39(4):824–827

    Article  CAS  Google Scholar 

  • Li A, Pfelzer N, Zuijderwijk R, Punt P (2012) Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization. BMC Biotechnol 12:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li A, van Luijk N, ter Beek M, Caspers M, Punt P, van der Werf M (2011) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 48(6):602–611. https://doi.org/10.1016/j.fgb.2011.01.013

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zheng K, Lai C, Ouyang J, Yong Q (2016) Improved itaconic acid production from undetoxified enzymatic hydrolysate of steam-exploded corn stover using an Aspergillus terreus mutant generated by atmospheric and room temperature plasma. Bioresources 11(4):9047–9058

    CAS  Google Scholar 

  • Listofcompanies (2017) http://www.listofcompaniesin.com/china/itaconic-acid/. Accessed 22.12.2017

  • Lockwood LB (1975) Production of organic acids by fermentation. In: Peppler HJ, Perlman D (eds) Microbial technology, vol 2. Academic Press, New York, pp 356–386

    Google Scholar 

  • Lockwood LB, Reeves MD (1945) Some factors affecting the production of itaconic acid by Aspergillus terreus. Arch Biochem 6(3):455–469

    CAS  Google Scholar 

  • López-Garzón CS, Straathof AJJ (2014) Recovery of carboxylic acids produced by fermentation. Biotechnol Adv 32(5):873–904. https://doi.org/10.1016/j.biotechadv.2014.04.002

    Article  PubMed  CAS  Google Scholar 

  • Maassen N, Panakova M, Wierckx N, Geiser E, Zimmermann M, Bölker M, Klinner U, Blank LM (2014) Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis. Eng Life Sci 14:129–134. https://doi.org/10.1002/elsc.201300043

    Article  CAS  Google Scholar 

  • Magalhães AI, de Carvalho JC, Ramírez ENM, Medina JDC, Soccol CR (2016a) Separation of itaconic acid from aqueous solution onto ion-exchange resins. J Chem Eng Data 61(1):430–437. https://doi.org/10.1021/acs.jced.5b00620

    Article  CAS  Google Scholar 

  • Magalhães AI Jr, de Carvalho JC, Medina JD, Soccol CR (2016b) Downstream process development in biotechnological itaconic acid manufacturing. Appl Microbiol Biotechnol 101:1–12. https://doi.org/10.1007/s00253-016-7972-z

    Article  PubMed  CAS  Google Scholar 

  • Marked Report (2015) Transparency market research,Market Report, Itaconic Acid

  • Mattey M (1992) The production of organic acids. Crit Rev Biotechnol 12(1–2):87–132

    Article  CAS  PubMed  Google Scholar 

  • McCoy M (2015) European biotechs eye itaconic acid. Chem Eng News 93(41):16–17 Concentrates

    Article  Google Scholar 

  • Monaghan RL, Alberts AW, Hoffman CH, Albers-Schonberg G (1981) Hypocholesteremic fermentation products and process of preparation. United States Patent 4 294 926

  • Nelson GEN, Traufler DH, Kelley SE, Lockwood LB (1952) Production of itaconic acid by Aspergillus terreus in 20-Liter fermentors. Ind Eng Chem 44(5):1166–1168. https://doi.org/10.1021/ie50509a062

    Article  CAS  Google Scholar 

  • Okabe M, Lies D, Kanamasa S, Park EY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biot 84(4):597–606

    Article  CAS  Google Scholar 

  • Otten A, Brocker M, Bott M (2015) Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab Eng 30:156–165. https://doi.org/10.1016/j.ymben.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33

    Article  CAS  Google Scholar 

  • Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22(3):189–259

    Article  CAS  PubMed  Google Scholar 

  • Park YS, Ohta N, Okabe M (1993) Effect of dissolved-oxygen concentration and impeller tip speed on itaconic acid production by Aspergillus terreus. Biotechnol Lett 15(6):583–586

    Article  CAS  Google Scholar 

  • Pedroso GB, Montipó S, Mario DAN, Alves SH, Martins AF (2017) Building block itaconic acid from left-over biomass. Biomass Convers Biorefin 7(1):23–35. https://doi.org/10.1007/s13399-016-0210-1

    Article  CAS  Google Scholar 

  • Petruccioli M, Pulci V, Federici F (1999) Itaconic acid production by Aspergillus terreus on raw starchy materials. Lett Appl Microbiol 28(4):309–312

    Article  CAS  Google Scholar 

  • Pfeifer VF, Vojnovich C, Heger EN (1952) Itaconic acid by fermentation with Aspergillus terreus. Ind Eng Chem 44(12):2975–2980. https://doi.org/10.1021/ie50516a055

    Article  CAS  Google Scholar 

  • Reddy CSK, Singh RP (2002) Enhanced production of itaconic acid from corn starch and market refuse fruits by genetically manipulated Aspergillus terreus SKR10. Bioresour Technol 85(1):69–71

    Article  CAS  PubMed  Google Scholar 

  • Robert T, Friebel S (2016) Itaconic acid - a versatile building block for renewable polyesters with enhanced functionality. Green Chem 18:2922–2934. https://doi.org/10.1039/C6GC00605A

    Article  CAS  Google Scholar 

  • Roehr M, Kubicek CP, Kominek J (1996). Citric acid, in Biotechnology: Products of primary metabolism, Volume 6, Second Edition (eds H.-J. Rehm and G. Reed), pp. 307–345. Wiley-VCH Verlag GmbH

  • Rychtera M, Wase DAJ (1981) The growth of Aspergillus terreus and the production of itaconic acid in batch and continuous cultures. The influence of pH. J Chem Technol Biotechnol 31:509–521. https://doi.org/10.1002/jctb.503310168

    Article  CAS  Google Scholar 

  • Saha BC (2017) Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. J Ind Microbiol Biot 44(2):303–315

    Article  CAS  Google Scholar 

  • Saha BC, Kennedy GJ (2017a) Mannose and galactose as substrates for production of itaconic acid by Aspergillus terreus. Lett Appl Microbiol 65(6):527–533. https://doi.org/10.1111/lam.12810

    Article  CAS  PubMed  Google Scholar 

  • Saha BC, Kennedy GJ (2017b) Ninety six well microtiter plate as microbioreactors for production of itaconic acid by six Aspergillus terreus strains. J Microbiol Methods 144:53–59. https://doi.org/10.1016/j.mimet.2017.11.002

    Article  PubMed  CAS  Google Scholar 

  • Saha BC, Kennedy GJ, Qureshi N, Bowman MJ (2017) Production of itaconic acid from pentose sugars by Aspergillus terreus. Biotechnol Prog 33(4):1059–1067. https://doi.org/10.1002/btpr.2485

    Article  CAS  PubMed  Google Scholar 

  • Sayama A, Kobayashi K, Ogoshi A (1994) Morphological and physiological comparisons of Helicobasidium mompa and H. purpureum. Mycoscience 35(1):15–20

    Article  Google Scholar 

  • Schute K, Detoni C, Kann A, Jung O, Palkovits R, Rose M (2016) Separation in biorefineries by liquid phase adsorption: itaconic acid as case study. ACS Sustain Chem Eng 4(11):5921–5928. https://doi.org/10.1021/acssuschemeng.6b00096

    Article  CAS  Google Scholar 

  • Shin WS, Lee D, Kim S, Jeong YS, Chun GT (2013) Application of scale-up criterion of constant oxygen mass transfer coefficient (kLa) for production of itaconic acid in a 50 L pilot-scale fermentor by fungal cells of Aspergillus terreus. J Microbiol Biotechnol 23(10):1445–1453

    Article  CAS  PubMed  Google Scholar 

  • Specht R, Aurich A, Kreyß E, Barth G, Bodinus C (2014) Verfahren zur biotechnologischen Herstellung von Itaconsäure. DE 102008011854 B4

  • Steiger MG, Blumhoff ML, Mattanovich D, Sauer M (2013) Biochemistry of microbial itaconic acid production. Front Microbiol 4: Article 23

  • Strelko CL, Lu WY, Dufort FJ, Seyfried TN, Chiles TC, Rabinowitz JD, Roberts MF (2011) Itaconic acid is a mammalian metabolite induced during macrophage activation. J Am Chem Soc 133(41):16386–16389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabuchi T, Sugisawa T, Ishidori T, Nakahara T, Sugiyama J (1981) Itaconic acid fermentation by a yeast belonging to the genus Candida. Agric Biol Chem 45(2):475–479

    CAS  Google Scholar 

  • Tate BE (1981) Itaconic acid and derivatives. Grayson MEckroth E (eds) Kirk-Othmer Encycl Chem Technol 3:865–873

  • Tevz G, Bencina M, Legisa M (2010) Enhancing itaconic acid production by Aspergillus terreus. Appl Microbiol Biot 87(5):1657–1664. https://doi.org/10.1007/s00253-010-2642-z

    Article  CAS  Google Scholar 

  • Tippkotter N, Duwe AM, Wiesen S, Sieker T, Ulber R (2014) Enzymatic hydrolysis of beech wood lignocellulose at high solid contents and its utilization as substrate for the production of biobutanol and dicarboxylic acids. Bioresour Technol 167:447–455. https://doi.org/10.1016/j.biortech.2014.06.052

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson N, Campbell JJR, Trussell PC (1950) The influence of zinc, iron, copper, and manganese on the production of citric acid by Aspergillus niger. J Bacteriol 59(2):217–227

    CAS  PubMed Central  Google Scholar 

  • Tsao G, Ouyang P, Chen J (2010 ) Biotechnology in China II: chemicals, energy and environment. Advances in biochemical engineering/biotechnology. Springer Berlin Heidelberg

  • van der Straat L, Tamayo-Ramos J, Schonewille T, de Graaff L (2013) Overexpression of a modified 6-phosphofructo-1-kinase results in an increased itaconic acid productivity in Aspergillus niger. AMB Express 3(1):57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Straat L, Vernooij M, Lammers M, van den Berg W, Schonewille T, Cordewener J, van der Meer I, Koops A, de Graaff LH (2014) Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microb Cell Factories 13:11. https://doi.org/10.1186/1475-2859-13-11

    Article  CAS  Google Scholar 

  • Wang JH, Tsai SH, Teng K (2012) Producing itaconic acid in yeast using glycerol as the substrate. United States Patent 8(192):965

    Google Scholar 

  • Weastra sro (2013) Wp 8.1, determination of market potential for selected platform chemicals: itaconic acid, succinic acid, 2,5-furandicarboxylic acid. Technical report, Bioconsept

  • Welter K (2000) Biotechnische Produktion von Itaconsäure aus nachwachsenden Rohstoffen mit immobilisierten Zellen. PhD thesis, Technical University of Braunschweig

  • Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S (2004) Top value added chemicals from biomass: volume I—results of screening for potential candidates from sugars and synthesis gas. Technical report, Department of Energy Washington DC

  • Willke T, Vorlop KD (2001) Biotechnological production of itaconic acid. Appl Microbiol Biot 56(3–4):289–295

    Article  CAS  Google Scholar 

  • Wu X, Liu Q, Deng Y, Li J, Chen X, Gu Y, Lv X, Zheng Z, Jiang S, Li X (2017) Production of itaconic acid by biotransformation of wheat bran hydrolysate with Aspergillus terreus CICC40205 mutant. Bioresour Technol 241:25–34. https://doi.org/10.1016/j.biortech.2017.05.080

    Article  CAS  PubMed  Google Scholar 

  • Yahiro K, Shibata S, Jia SR, Park Y, Okabe M (1997) Efficient itaconic acid production from raw corn starch. J Ferment Bioeng 84(4):375–377

    Article  CAS  Google Scholar 

  • Yahiro K, Takahama T, Park YS, Okabe M (1995) Breeding of Aspergillus-terreus mutant TN-484 for itaconic acid production with high-yield. J Ferment Bioeng 79(5):506–508

    Article  CAS  Google Scholar 

  • Zambanini T, Hartmann SK, Schmitz LM, Buttner L, Hosseinpour Tehrani H, Geiser E, Beudels M, Venc D, Wandrey G, Buchs J, Schwarzlander M, Blank LM, Wierckx N (2017a) Promoters from the itaconate cluster of Ustilago maydis are induced by nitrogen depletion. Fungal Biol Biotechnol 4:11. https://doi.org/10.1186/s40694-017-0040-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Zambanini T, Hosseinpour Tehrani H, Geiser E, Merker D, Schleese S, Krabbe J, Buescher JM, Meurer G, Wierckx N, Blank LM (2017b) Efficient itaconic acid production from glycerol with Ustilago vetiveriae TZ1. Biotechnol Biofuels 10:131. https://doi.org/10.1186/s13068-017-0809-x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Kuenz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuenz, A., Krull, S. Biotechnological production of itaconic acid—things you have to know. Appl Microbiol Biotechnol 102, 3901–3914 (2018). https://doi.org/10.1007/s00253-018-8895-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8895-7

Keywords

Navigation