Skip to main content
Log in

Probing the origins of anticancer activity of chrysin derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Chrysin is a derivative of flavonoid, a natural product commonly found in plants. It has been shown to afford a wide variety of pharmacological activities particularly anticancer properties. In this study, 21 chrysin derivatives with anticancer activities against human gastric adenocarcinoma (SGC-7901) and human colorectal adenocarcinoma (HT-29) cell lines were employed for quantitative structure–activity relationship (QSAR) investigation. Molecular structures were geometrically optimized at the B3LYP/6-311++g(d,p) level and their quantum chemical and molecular properties were obtained from Gaussian 09 and Dragon softwares, respectively. Significant descriptors for modeling the anticancer activities of SGC-7901 (i.e., SIC2, Mor11e, P2p, HTp, and R5e+) and HT-29 (i.e., L/Bw, BIC2, and Mor19p) cell lines were deduced from stepwise multiple linear regression (MLR) method. QSAR models were constructed using MLR and their predictivities were verified via internal (i.e., leave one-out cross-validation; LOO-CV) and external sets. The predictive performance was evaluated from their squared correlation coefficients (R 2 and Q 2) and root mean square error (RMSE). Results indicated good correlation between experimental and predicted anticancer activities as deduced from statistical parameters of internal and external sets as follows: R 2Tr  = 0.8778, RMSETr = 0.0854, Q 2CV  = 0.7315, RMSECV = 0.1375, Q 2Ext  = 0.7324, and RMSEExt = 0.1168 for QSAR models of SGC-7901 while R 2Tr  = 0.8201, RMSETr = 0.1293, Q 2CV  = 0.6829, RMSECV = 0.1735, Q 2Ext  = 0.8486, and RMSEExt = 0.1179 for QSAR models of HT-29. Furthermore, the obtained QSAR models provided pertinent insights on the structure–activity relationship of investigated compounds where molecular properties such as shape, electronegativities and polarizabilities were crucial for anticancer activity. The knowledge gained from the constructed QSAR models could serve as guidelines for the rational design of novel chrysin derivatives with potent anticancer activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bae Y, Lee S, Kim SH (2011) Chrysin suppresses mast cell-mediated allergic inflammation: involvement of calcium, caspase-1 and nuclear factor-κB. Toxicol Appl Pharmacol 254:56–64

    Article  CAS  PubMed  Google Scholar 

  • Batra P, Sharma AK (2013) Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech 3:439–459

    Article  PubMed Central  Google Scholar 

  • Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043

    Article  CAS  PubMed  Google Scholar 

  • Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    Article  CAS  PubMed  Google Scholar 

  • DenningtonII R, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2003) GaussView, Version 3.09. Semichem Inc, Shawnee Mission, KS

    Google Scholar 

  • Drews J (2007) Drug discovery: a historical perspective. Science 287:1960–1964

    Article  Google Scholar 

  • Duchowicz PR, Bennardi DO, Bacelo DE, Bonifazi EL, Rios-Luci C, Padrón JM, Burton G, Misico RI (2014) QSAR on antiproliferative naphthoquinones based on a conformation-independent approach. Eur J Med Chem 77:176–184

    Article  CAS  PubMed  Google Scholar 

  • Eriksson L, Johansson E (1996) Multivariate design and modeling in QSAR. Chemometr Intell Lab Syst 34:1–19

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Wallingford, Connecticut

    Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim AK, Youssef AI, Arafa AS, Ahmed SA (2013) Anti-H5N1 virus flavonoids from Capparis sinaica Veill. Nat Prod Res 27:2149–2153

    Article  CAS  PubMed  Google Scholar 

  • Ishihara M, Yokote Y, Sakagami H (2006) Quantitative structure-cytotoxicity relationship analysis of coumarin and its derivatives by semiempirical molecular orbital method. Anticancer Res 26:2883–2886

    CAS  PubMed  Google Scholar 

  • Ishihara M, Kawase M, Westman G, Samuelsson K, Motohashi N, Sakagami H (2007) Quantitative structure-cytotoxicity relationship analysis of phenoxazine derivatives by semiempirical molecular-orbital method. Anticancer Res 27:4053–4057

    CAS  PubMed  Google Scholar 

  • Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, Lee MT (2005) The antitumor activities of flavonoids. In Vivo 19:895–909

    PubMed  Google Scholar 

  • Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96:1027–1044

    Article  CAS  PubMed  Google Scholar 

  • Khachatoorian R, Arumugaswami V, Raychaudhuri S, Yeh GK, Maloney EM, Wang J, Dasgupta A, French SW (2012) Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle. Virology 433:346–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kubo I, Kinst-Hori I, Chaudhuri SK, Kubo Y, Sánchez Y, Ogura T (2000) Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorg Med Chem 8:1749–1755

    Article  CAS  PubMed  Google Scholar 

  • Mohammed HA, Ba LA, Burkholz T, Schumann E, Diesel B, Zapp J, Kiemer AK, Ries C, Hartmann RW, Hosny M, Jacob C (2011) Facile synthesis of chrysin-derivatives with promising activities as aromatase inhibitors. Nat Prod Commun 6:31–34

    CAS  PubMed  Google Scholar 

  • Nantasenamat C, Isarankura-Na-Ayudhya C, Naenna T, Prachayasittikul V (2007a) Quantitative structure-imprinting factor relationship of molecularly imprinted polymers. Biosens Bioelectron 22:3309–3317

    Article  CAS  PubMed  Google Scholar 

  • Nantasenamat C, Isarankura-Na-Ayudhya C, Tansila N, Naenna T, Prachayasittikul V (2007b) Prediction of GFP spectral properties using artificial neural network. J Comput Chem 28:1275–1289

    Article  CAS  PubMed  Google Scholar 

  • Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V (2010) Advances in computational methods to predict the biological activity of compounds. Expert Opin Drug Discov 5:633–654

    Article  CAS  PubMed  Google Scholar 

  • Nantasenamat C, Worachartcheewan A, Prachayasittikul S, Isarankura-Na-Ayudhya C, Prachayasittikul V (2013a) QSAR modeling of aromatase inhibitory activity of 1-substituted 1,2,3-triazole analogs of letrozole. Eur J Med Chem 69:99–114

    Article  CAS  PubMed  Google Scholar 

  • Nantasenamat C, Li H, Mandi P, Worachartcheewan A, Monnor T, Isarankura-Na-Ayudhya C, Prachayasittikul V (2013b) Exploring the chemical space of aromatase inhibitors. Mol Divers 17:661–677

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  • Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425

    CAS  PubMed  Google Scholar 

  • Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  • Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  • Parr RG, Szentpaly Lv, Liu S (1999) Electrophilicity Index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, Kohli K (2009) Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm Allergy Drug Targets 8:229–235

    Article  CAS  PubMed  Google Scholar 

  • Sathiavelu J, Senapathy GJ, Devaraj R, Namasivayam N (2009) Hepatoprotective effect of chrysin on prooxidant-antioxidant status during ethanol-induced toxicity in female albino rats. J Pharm Pharmacol 61:809–817

    Article  CAS  PubMed  Google Scholar 

  • Serafini M, Peluso I, Raguzzini A (2010) Flavonoids as anti-inflammatory agents. Proc Nutr Soc 69:273–278

    Article  CAS  PubMed  Google Scholar 

  • Sun LP, Chen AL, Hung HC, Chien YH, Huang JS, Huang CY, Chen YW, Chen CN (2012) Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis. J Agric Food Chem 60:11748–11758

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Kokubo R, Sakaino M (2004) Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculata. Lett Appl Microbiol 39:60–64

    Article  CAS  PubMed  Google Scholar 

  • Thanikaivelan P, Subramanian V, Raghava Rao J, Unni Nair B (2000) Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem Phys Lett 323:59–70

    Article  CAS  Google Scholar 

  • Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69–77

    Article  CAS  Google Scholar 

  • Wang J, Qiu J, Dong J, Li H, Luo M, Dai X, Zhang Y, Leng B, Niu X, Zhao S, Deng X (2011) Chrysin protects mice from Staphylococcus aureus pneumonia. J Appl Microbiol 111:1551–1558

    Article  CAS  PubMed  Google Scholar 

  • Witten IH, Frank E, Hall MA (2011) Data mining: practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Woo KJ, Jeong YJ, Park JW, Kwon TK (2004) Chrysin-induced apoptosis is mediated through caspase activation and Akt inactivation in U937 leukemia cells. Biochem Biophys Res Commun 325:1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Worachartcheewan A, Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V (2013a) QSAR study of amidino bis-benzimidazole derivatives as potent anti-malarial agents against Plasmodium falciparum. Chem Pap 67:1462–1473

    Article  CAS  Google Scholar 

  • Worachartcheewan A, Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V (2013b) Predicting antimicrobial activities of benzimidazole derivatives. Med Chem Res 22:5418–5430

    Article  CAS  Google Scholar 

  • Worachartcheewan A, Nantasenamat C, Owasirikul W, Monnor T, Naruepantawart O, Janyapaisarn S, Prachayasittikul S, Prachayasittikul V (2014) Insights into antioxidant activity of 1-adamantylthiopyridine analogs using multiple linear regression. Eur J Med Chem 73:258–264

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Yang X, Morris ME (2004a) Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol Pharmacol 65:1208–1216

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Chen X, Qu L, Wu J, Cui R, Zhao Y (2004b) Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells. Bioorg Med Chem 12:6097–6105

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Meng WD, Xu YY, Cao JG, Qing FL (2003) Synthesis and anticancer effect of chrysin derivatives. Bioorg Med Chem Lett 13:881–884

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Zhao FF, Liu YM, Yao X, Zheng ZT, Luo X, Liao DF (2010) Synthesis and preliminary biological evaluation of chrysin derivatives as potential anticancer drugs. Med Chem 6:6–8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research project is supported by the annual budget grant of Mahidol University (B.E. 2556–2558). A. W. is thankful for Mahidol University Talent Management Program. Partial support is gratefully acknowledged from Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chanin Nantasenamat or Virapong Prachayasittikul.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worachartcheewan, A., Nantasenamat, C., Isarankura-Na-Ayudhya, C. et al. Probing the origins of anticancer activity of chrysin derivatives. Med Chem Res 24, 1884–1892 (2015). https://doi.org/10.1007/s00044-014-1260-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1260-1

Keywords

Navigation