Skip to main content
Log in

Biochemical and physiological effects of sterol alterations in yeast—A review

  • Symposium
  • Published:
Lipids

Abstract

Considerable progress has been made in the selection and characterization of mutants that are defective in the synthesis of ergosterol in the yeast,Saccharomyces cerevisiae. Mutations in nearly every step of the yeast sterol biosynthetic pathway have been induced and selected. These mutants have been used to elucidate the sequential order of steps in sterol synthesis, to study the mode of action of antifungal agents and to determine the method of resistance of some pathogenic fungi, and to answer questions on the role of sterols in general cell biology. Physiological examination of ergosterol null mutants, lacking all biochemical activity attributed to the particular gene, supports a role for ergosterol in a number of critical functions in the organism. Among the physiological functions attributed to ergosterol are sparking and bulking requirements, involvement in amino acid and pyrimidine transport, resistance to antifungal agents and certain cations, and a requirement for respiratory activity. Those genetic null alleles discussed in this review areerg24, lacking the ability to reduce the Δ14 double bond;erg6, unable to methylate C-24; anderg3, defective in the C-5 desaturase. The different biochemical activities that are disrupted in the ergosterol mutants support a role for ergosterol in a number of critical functions in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

Erd2p:

structural protein encoded by the ERD2 gene

Erg3p:

structural protein encoded by the ERG3 gene

References

  1. Rodriguez, R.J., Low, C., Bottema, C.D.K., and Parks, L.W. (1985)Biochim. Biophys. Acta 837, 336–343.

    PubMed  CAS  Google Scholar 

  2. Parks, L.W., Anding, C., and Ourisson, G. (1974)Eur. J. Biochem. 43, 451–458.

    Article  PubMed  CAS  Google Scholar 

  3. Gaber, R.F., Copple, D.M., Kennedy, B.K., Vida, M., and Bard, M. (1989)Mol. Cell. Biol. 9, 3447–3456.

    PubMed  CAS  Google Scholar 

  4. McCammon, M.T., Hartmann, M.-A., Bottema, C.D.K., and Parks, L.W. (1984)J. Bacteriol. 157, 475–483.

    PubMed  CAS  Google Scholar 

  5. Grenson, M., and Crabeel, M. (1970)J. Bacteriol. 103, 770–777.

    PubMed  CAS  Google Scholar 

  6. Kotyk, A., and Dvorakova, M. (1990)Folia Microbiol. 35, 209–217.

    CAS  Google Scholar 

  7. Welihinda, A.A., Beavis, A.D., and Trumbly, R.J. (1994)Biochim. Biophys. Acta 1193, 107–117.

    Article  PubMed  CAS  Google Scholar 

  8. Bard, M., Lees, N.D., Burrows, L.S., and Kleinhans, F.W. (1978)J. Bacteriol. 135, 1146–1148.

    PubMed  CAS  Google Scholar 

  9. Vogel, J.P., Lee, J.N., Kirsch, D.R., Rose, M.D., and Sztul, E.S. (1993)J. Biol. Chem. 268, 3040–3042.

    PubMed  CAS  Google Scholar 

  10. Graham, T.R., Scott, P.A., and Emr, S.D. (1993)Embo. J. 12, 869–877.

    PubMed  CAS  Google Scholar 

  11. Shah, N., and Klausner, R.D. (1993)J. Biol. Chem. 268, 5345–5348.

    PubMed  CAS  Google Scholar 

  12. Tomeo, M.E., Fenner, G., Tove, S.R., and Parks, L.W. (1992)Yeast 8, 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  13. Pryer, N.K., Wuestehube, L.J., and Schekman, R. (1992)Ann. Rev. Biochem. 61, 471–516.

    Article  PubMed  CAS  Google Scholar 

  14. Pelham, H.R.B. (1989)Ann. Rev. Cell. Biol. 5, 1–23.

    PubMed  CAS  Google Scholar 

  15. Semenza, J.C., Hardwick, K.G., Dean, N., and Pelham, H.R.B. (1990)Cell 61, 1349–1357.

    Article  PubMed  CAS  Google Scholar 

  16. Hardwick, K.G., and Pelham, H.R.B. (1994)Yeast 10, 265–269.

    Article  PubMed  CAS  Google Scholar 

  17. Clausen, J.K., Christiansen, K., Jensen, P.K., and Behnke, O. (1974)FEBS Lett. 43, 176–179.

    Article  PubMed  CAS  Google Scholar 

  18. Atkinson, D.E. (1977)Cellular Energy Metabolism and Its Regulation, Academic Press, New York.

    Google Scholar 

  19. Parks, L.W. (1978)Crit. Rev. Microbiol. 6, 301–341.

    CAS  Google Scholar 

  20. Akhtar, M., Brooks, W.A., and Watkinson, I.A. (1969)Biochem. J. 115, 135–137.

    PubMed  CAS  Google Scholar 

  21. Alexander, K., Akhtar, M., Boar, R.B., McGhie, J.F., and Barton, D.H.R. (1972)J. Chem. Soc. Chem. Commun., 383–385.

  22. Bottema, C.K., and Parks, L.W. (1978)Biochim. Biophys. Acta 531, 301–307.

    PubMed  CAS  Google Scholar 

  23. Hays, P.R., Neal, W.D., and Parks, L.W. (1977)Antimicrob. Agents Chemother. 12, 185–191.

    PubMed  CAS  Google Scholar 

  24. Hays, P.R., Parks, L.W., Pierce, H.D., and Oehlschlager, A.C. (1977)Lipids 12, 666–668.

    Article  PubMed  CAS  Google Scholar 

  25. Bailey, R.B., Hays, P.R., and Parks, L.W. (1976)J. Bacteriol. 128, 730–734.

    PubMed  CAS  Google Scholar 

  26. Baloch, R.I., Mercer, E.I., Wiggins, T.E., and Baldwin, B.C. (1984)Phytochem. 23, 2219–2226.

    Article  CAS  Google Scholar 

  27. Marcireau, C., Guilloton, M., and Karst, F. (1990)Antimicrob. Agents Chemother. 34, 989–993.

    PubMed  CAS  Google Scholar 

  28. Lorenz, R.T., and Parks, L.W. (1991)Antimicrob. Agents Chemother. 35, 1532–1537.

    PubMed  CAS  Google Scholar 

  29. Lorenz, R.T., and Parks, L.W. (1992)DNA Cell Biol. 11, 685–692.

    Article  PubMed  CAS  Google Scholar 

  30. Steel, C.C., Baloch, R.I., Mercer, E.I., and Baldwin, B.C. (1989)Pestic. Biochem. Physiol. 33, 101–111.

    Article  CAS  Google Scholar 

  31. Crowley, J.H., Lorenz, R.T., and Parks, L.W. (1994)Antiomicrob. Agents Chemother. 38, 1004–1007.

    CAS  Google Scholar 

  32. Grenson, M. (1969)Eur. J. Biochem. 11, 249–260.

    Article  PubMed  CAS  Google Scholar 

  33. Jund, R., and Lacroute, F. (1970)J. Bacteriol. 102, 607–615.

    PubMed  CAS  Google Scholar 

  34. Osumi, T., Nishino, T., and Katsuki, H. (1979)J. Biochem. (Tokyo) 85, 819–826.

    CAS  Google Scholar 

  35. Rodriguez, R.J., Taylor, F.R., and Parks, L.W. (1982)Biochem. Biophys. Res. Commun. 106, 435–441.

    Article  PubMed  CAS  Google Scholar 

  36. Rodriguez, R.J., and Parks, L.W. (1983)Arch. Biochem. Biophys. 225, 861–871.

    Article  PubMed  CAS  Google Scholar 

  37. Lorenz, R.T., Casey, W.M., and Parks, L.W. (1989)J. Bacteriol. 171, 6169–6173.

    PubMed  CAS  Google Scholar 

  38. Smith, S.J., and Parks, L.W. (1993)Yeast 9, 1177–1187.

    Article  PubMed  CAS  Google Scholar 

  39. Arthington, B.A., Bennett, L.G., Skatrud, P.L., Guynn, C.J., Burbuch, R.J., Ulbright, C.E., and Bard, M. (1991)Gene 102, 39–44.

    Article  PubMed  CAS  Google Scholar 

  40. Lewis, T.A., Taylor, F.R., and Parks, L.W. (1985)J. Bacteriol. 163, 199–207.

    PubMed  CAS  Google Scholar 

  41. Shinabarger, D.L., Keesler, G.A., and Parks, L.W. (1989)Steroids 53, 607–623.

    Article  PubMed  CAS  Google Scholar 

  42. Lewis, T.A., Taylor, F.R., and Parks, L.W. (1985)J. Bacteriol. 163, 199–207.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Parks, L.W., Smith, S.J. & Crowley, J.H. Biochemical and physiological effects of sterol alterations in yeast—A review. Lipids 30, 227–230 (1995). https://doi.org/10.1007/BF02537825

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537825

Keywords

Navigation