Skip to main content

Advertisement

Log in

Topology optimization for the design of flow fields in a redox flow battery

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents topology optimization for the design of flow fields in vanadium redox flow batteries (VRFBs), which are large-scale storage systems for renewable energy resources such as solar and wind power. It is widely known that, in recent VRFB systems, one of the key factors in boosting charging or discharging efficiency is the design of the flow field around carbon fiber electrodes and in flow channels. In this study, topology optimization is applied in order to achieve optimized flow field designs. The optimization problem is formulated as a maximization problem for the generation rate of the vanadium species governed by a simplified electrochemical reaction model. A typical porous model is incorporated into the optimization problem for expressing the carbon fiber electrode; furthermore, a mass transfer coefficient that depends on local velocity is introduced. We investigate the dependencies of the optimized configuration with respect to the porosity of the porous electrode and the pressure loss. Results indicate that patterns of interdigitated flow fields are valid designs for VRFBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aaron D, Liu Q, Tang Z, Grim G, Papandrew A, Turhan A, Zawodzinski T, Mench M (2012) Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J Power Sources 206:450–453

    Article  Google Scholar 

  • Alexandersen J, Aage N, Andreasen CS, Sigmund O (2014) Topology optimisation for natural convection problems. Int J Numer Meth Fluids 76(10):699–721

    Article  MathSciNet  Google Scholar 

  • Alexandersen J, Sigmund O, Aage N (2016) Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection. Int J Heat Mass Trans 100:876–891

    Article  Google Scholar 

  • Andreasen CS, Gersborg AR, Sigmund O (2009) Topology optimization of microfluidic mixers. Int J Numer Meth Fluids 61(5):498–513

    Article  MathSciNet  MATH  Google Scholar 

  • Behrou R, Lawry M, Maute K (2017) Level set topology optimization of structural problems with interface cohesion. Int J Numer Meth Eng. doi:10.1002/nme.5540

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, New York

    MATH  Google Scholar 

  • Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Int J Numer Meth Fluids 41(1):77–107

    Article  MathSciNet  MATH  Google Scholar 

  • Coffin P, Maute K (2016) A level-set method for steady-state and transient natural convection problems. Struct Multidisc Optim 53(5):1047–1067

    Article  MathSciNet  Google Scholar 

  • Cunha Á, Martins J, Rodrigues N, Brito F (2015) Vanadium redox flow batteries: a technology review. Int J Energy Res 39(7):889–918

    Article  Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidisc Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  • Delanghe B, Tellier S, Astruc M (1990) Mass transfer to a carbon or graphite felt electrode. Electrochim Acta 35(9):1369–1376

    Article  Google Scholar 

  • Deng Y, Liu Z, Zhang P, Liu Y, Gao Q, Wu Y (2012) A flexible layout design method for passive micromixers. Biomed Microdevices 14(5):929–945

    Article  Google Scholar 

  • Hughes TJ, Mallet M (1986) A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems. Comput Methods Appl Mech Eng 58(3):305–328

    Article  MathSciNet  MATH  Google Scholar 

  • Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidisc Optim 44(1):19–24

    Article  MATH  Google Scholar 

  • Koga AA, Lopes ECC, Nova HFV, de Lima CR, Silva ECN (2013) Development of heat sink device by using topology optimization. Int J Heat Mass Trans 64:759–772

    Article  Google Scholar 

  • Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidisc Optim 46(3):311–326

    Article  MathSciNet  MATH  Google Scholar 

  • Kubo S, Yaji K, Yamada T, Izui K, Nishiwaki S (2017) A level set-based topology optimization method for optimal manifold designs with flow uniformity in plate-type microchannel reactors. Struct Multidisc Optim 55 (4):1311–1327

    Article  MathSciNet  Google Scholar 

  • Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Meth Eng 86(6):765–781

    Article  MathSciNet  MATH  Google Scholar 

  • Lin S, Zhao L, Guest JK, Weihs TP, Liu Z (2015) Topology optimization of fixed-geometry fluid diodes. J Mech Des 137(8):081402

    Article  Google Scholar 

  • Matsumori T, Kondoh T, Kawamoto A, Nomura T (2013) Topology optimization for fluid–thermal interaction problems under constant input power. Struct Multidisc Optim 47(4):571–581

    Article  MATH  Google Scholar 

  • Okkels F, Bruus H (2007) Scaling behavior of optimally structured catalytic microfluidic reactors. Phys Rev E 75(1):016301

    Article  Google Scholar 

  • Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow. Int J Numer Meth Fluids 65(7):975–1001

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer C (2008) A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Int J Numer Meth Fluids 58(8):861–877

    Article  MathSciNet  MATH  Google Scholar 

  • Rychcik M, Skyllas-Kazacos M (1988) Characteristics of a new all-vanadium redox flow battery. J Power Sources 22(1):59–67

    Article  Google Scholar 

  • Schäpper D, Lencastre Fernandes R, Lantz AE, Okkels F, Bruus H, Gernaey KV (2011) Topology optimized microbioreactors. Biotechnol Bioeng 108(4):786–796

    Article  Google Scholar 

  • Schmal D, Van Erkel J, Van Duin P (1986) Mass transfer at carbon fibre electrodes. J Appl Electrochem 16(3):422–430

    Article  Google Scholar 

  • Shah A, Watt-Smith M, Walsh F (2008) A dynamic performance model for redox-flow batteries involving soluble species. Electrochim Acta 53(27):8087–8100

    Article  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidisc Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Tezduyar TE, Mittal S, Ray S, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95(2):221–242

    Article  MATH  Google Scholar 

  • Tomadakis MM, Robertson TJ (2005) Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results. J Compos Mater 39(2):163–188

    Article  Google Scholar 

  • Tsushima S, Suzuki T (2016) Modeling and simulation of an interdigitated vanadium redox flow battery with interfacial mass transfer resistance. The First Pacific-Rim Thermal Engineering Conference, PRTEC-15318

  • Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidisc Optim 43(6):767–784

    Article  MATH  Google Scholar 

  • Xu Q, Zhao T, Leung P (2013) Numerical investigations of flow field designs for vanadium redox flow batteries. Appl Energy 105:47–56

    Article  Google Scholar 

  • Xu Q, Zhao T, Zhang C (2014) Performance of a vanadium redox flow battery with and without flow fields. Electrochim Acta 142:61–67

    Article  Google Scholar 

  • Yaji K, Yamada T, Yoshino M, Matsumoto T, Izui K, Nishiwaki S (2014) Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions. J Comput Phys 274:158–181

    Article  MathSciNet  MATH  Google Scholar 

  • Yaji K, Yamada T, Kubo S, Izui K, Nishiwaki S (2015) A topology optimization method for a coupled thermal–fluid problem using level set boundary expressions. Int J Heat Mass Trans 81:878–888

    Article  Google Scholar 

  • Yaji K, Yamada T, Yoshino M, Matsumoto T, Izui K, Nishiwaki S (2016) Topology optimization in thermal-fluid flow using the lattice Boltzmann method. J Comput Phys 307:355–377

    Article  MathSciNet  MATH  Google Scholar 

  • You D, Zhang H, Chen J (2009) A simple model for the vanadium redox battery. Electrochim Acta 54 (27):6827–6836

    Article  Google Scholar 

  • Zheng Q, Zhang H, Xing F, Ma X, Li X, Ning G (2014) A three-dimensional model for thermal analysis in a vanadium flow battery. Appl Energy 113:1675–1685

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 16H06935 and by the Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Yaji.

Appendix: Dimensionless form

Appendix: Dimensionless form

To simplify the numerical implementation, the governing equations (3), (7), and (8) are replaced with dimensionless equations as follows:

$$\begin{array}{@{}rcl@{}} &&{}\nabla^{*}\cdot\mathbf{u}^{*}=0, \end{array} $$
(A.1)
$$\begin{array}{@{}rcl@{}} &&{}(\mathbf{u}^{*}\cdot\nabla^{*})\mathbf{u}^{*}=-\nabla^{*} p^{*}+\frac{1}{Re}\nabla^{*2}\mathbf{u}^{*}-\alpha^{*}\mathbf{u}^{*}, \end{array} $$
(A.2)
$$\begin{array}{@{}rcl@{}} &&{}\mathbf{u}^{*}\cdot\nabla^{*} c^{*}=\frac{1}{Pe}\nabla^{*2}c^{*} + K_{\text{m}}^{*}(1-c^{*}), \end{array} $$
(A.3)

where the asterisk represents dimensionless variables defined using a characteristic length L, a characteristic speed U, and the inlet concentration of vanadium c in as follows:

$$\begin{array}{@{}rcl@{}} &&{}\nabla^{*}= L\nabla, \ \ \mathbf{u}^{*}=\frac{\mathbf{u}}{U}, \ \ p^{*}=\frac{p-p_{0}}{\rho U^{2}}, \ \ \alpha^{*}=\frac{\alpha L}{\rho U}, \\ &&{}c^{*}=\frac{c-c_{\text{in}}}{c_{\max}-c_{\text{in}}}, \ \ K_{\text{m}}^{*}=\frac{k_{\text{m}}A_{\text{V}}L}{U}. \end{array} $$

The Reynolds number, R e, and the Pélet number, P e, are respectively given by

$$\begin{array}{@{}rcl@{}} Re&=&\frac{\rho UL}{\mu}, \end{array} $$
(A.4)
$$\begin{array}{@{}rcl@{}} Pe&=&\frac{UL}{D}. \end{array} $$
(A.5)

In the numerical examples, the characteristic length L is defined as the inlet width. It is noted that the characteristic speed U cannot be defined using the magnitude of the inlet velocity since the pressure loss is fixed in this paper. According to previous research (Yaji et al. 2015), U can be defined using the pressure loss as follows:

$$ U=\sqrt{\frac{\Delta p}{\rho}}, $$
(A.6)

where Δp is the dimensional pressure loss, and thus U has the same units as velocity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaji, K., Yamasaki, S., Tsushima, S. et al. Topology optimization for the design of flow fields in a redox flow battery. Struct Multidisc Optim 57, 535–546 (2018). https://doi.org/10.1007/s00158-017-1763-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1763-8

Keywords

Navigation