Skip to main content
Log in

Electrochemical determination of pipazethate hydrochloride on Na-montmorillonite modified carbon paste electrode in formulation and human blood

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical and interfacial adsorptive behavior of pipazethate HCl (PZ.HCl) onto the developed carbon paste electrode surface modified with sodium-montmorillonite clay (Na-MMT CPE) were investigated using cyclic voltammetry. Two validated adsorptive anodic stripping voltammetry methods have also been developed for its determination using 7 % (w/w) Na-MMT-modified CPE. Langmuir isotherm can describe the experimental data well, indicating monolayer adsorption. Limits of detection of 2.4 × 10−7 and 3.0 × 10−8 mol L−1 PZ.HCl were achieved in the bulk form using linear-sweep and square-wave adsorptive anodic stripping voltammetric methods, respectively. The developed methods were also successfully applied for determination of PZ.HCl in pharmaceutical formulation and in spiked human serum without time-consuming extraction steps prior to the analysis. Statistical comparison of the results of the proposed methods with that of official and reported spectrophotometric methods indicates no significant difference in precision and accuracy between the proposed and reference methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reynolds JEF (ed) (1993) Martindale, the extra pharmacopoeia, 30th edn. London, Pharmaceutical Press

    Google Scholar 

  2. Revanasiddappa HD, Ramachandra MB, Ramachandra H (2002) Indian Drugs 39:589–592

    Google Scholar 

  3. Ismaiel O, Hosny M, Ragab G (2012) Asian J Pharm Clin Res 5:215–219

    CAS  Google Scholar 

  4. Hadad GM, Abdel Salam R, Emara AS (2011) J Liq Chromatogr Relat Technol 34:1850–1869

    Article  CAS  Google Scholar 

  5. El-Saharty YS, El-Ragehy NA, Abdel-Monem HM, Abdel-Kawy MI (2010) J Adv Res 1:71–78

    Article  Google Scholar 

  6. El-Shiekh R, Zahran F, Gouda AA (2007) Spectrochim Acta A 66:1279–1287

    Article  Google Scholar 

  7. El-Shiekh R, Amin AS, Zahran F, Gouda AA (2007) J AOAC Int 90:686–692

    CAS  Google Scholar 

  8. Amin AS, El-Sheikh R, Zahran F, Gouda AA (2007) Spectrochim Acta A 67:1088–1093

    Article  Google Scholar 

  9. Gouda AA, El-Sheikh R, El Shafey Z, Hossny N, El-Azzazy R (2008) Int J Biomed Sci 4:294–302

    Google Scholar 

  10. Hassan MA, El-Asmy AF, Abd El-Raheem YB (2011) Int J Pharm Sci Res 2:2589–2601

    CAS  Google Scholar 

  11. Hosny MM (2013) Int J Insect Sci 2:8–14

    Google Scholar 

  12. Gouda AA (2013) J Spec. doi:10.1155/2013/796984

    Google Scholar 

  13. Issa YM, Shoukry AF, El-Nashar RM (2001) J Pharm Biomed Anal 26:379–386

    Article  CAS  Google Scholar 

  14. Abdel-Ghani NT, Shoukry AF, El Nashar RM (2001) Analyst 126:79–85

    Article  CAS  Google Scholar 

  15. Huang W, Zhang S, Wu Y (2006) Russ J Electrochem 42:153–156

    Article  CAS  Google Scholar 

  16. Mokhtari A, Karimi-Maleh H, Ensafi AA, Beitollahi H (2012) Sens Actuators B 169:96–105

    Article  CAS  Google Scholar 

  17. Chen W, Zhang M-X, Li C, Li Y-L (2013) J Serb Chem Soc 78:537–548

    Article  CAS  Google Scholar 

  18. Ghoneim EM, El-Desoky HS (2010) Bioelectrochemistry 79:241–247

    Article  CAS  Google Scholar 

  19. Mascarenhas RJ, Namboothiri IN, Sherigara BS, Mahadevan KM (2007) Croat Chem Acta 80:53–59

    CAS  Google Scholar 

  20. Svancara I, Schachl K (1999) Chem List 93:490–499

    CAS  Google Scholar 

  21. Svancara I, Vytras K, Kalcher K, Walcarius A, Wang J (2009) Electroanalysis 21:7–28

    Article  CAS  Google Scholar 

  22. Villalba MM, Davis J (2008) J Solid State Electrochem 12:1245–1254

    Article  CAS  Google Scholar 

  23. Navratilova Z, Kula P (2003) Electroanalysis 15:837–846

    Article  CAS  Google Scholar 

  24. Olphen HV (1977) An introduction to clay colloid chemistry, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  25. Xiao-wen L, Min H, Yue-hua H (2008) J Cent South Univ Technol 15:193–197

    Article  Google Scholar 

  26. Avenal MJ, De Pauli CP (1998) J Colloid Interface Sci 202:195–204

    Article  Google Scholar 

  27. Boyd SA, Mortland MM, Chiou CT (1998) Soil Sci Soc Am J 52:652–657

    Article  Google Scholar 

  28. Smith JA, Jaffe PR, Chiou CT (1990) Environ Sci Technol 24:1167–1172

    Article  CAS  Google Scholar 

  29. Strawnl DG, Sparks DL (1999) J Colloid Interface Sci 216:257–269

    Article  Google Scholar 

  30. Duran JDG, Ramos-Tejada MM, Arroyo FJ (2000) J Colloid Interface Sci 229:107–117

    Article  CAS  Google Scholar 

  31. Morigi M, Scavetta E, Berrettoni M, Giorgetti M, Tonelli D (2001) Anal Chim Acta 439:265–272

    Article  CAS  Google Scholar 

  32. Kula P, Navratilova Z Electroanalysis 13:795–798

  33. El-Desoky HS, Ismail IM, Ghoneim MM (2013) J Solid State Electrochem 17:3153–3167

    Article  CAS  Google Scholar 

  34. Beltagi AM, Ghoneim EM, Ghoneim MM (2011) Int J Environ Anal Chem 91:17–32

    Article  CAS  Google Scholar 

  35. El-Desoky HS, Ghoneim MM (2011) Talanta 84:223–234

    Article  CAS  Google Scholar 

  36. Huang W, Zhou D, Liu X, Zheng X (2009) Environ Technol 30:701–706

    Article  CAS  Google Scholar 

  37. Human metabolome database, version 3.5, Metabocard for Pipazethate, HMDB15686

  38. Borekand V, Morra MJ (1998) Environ Sci Technol 32:2149–2153

    Article  Google Scholar 

  39. Jyoti PJ, Reddy KG, Reddy BS, Reddy YVM, Madhavi G IJIRSE, ISSN (Online) 2347–3207

  40. Murray HH (2000) Appl Clay Sci 17:207–221

    Article  CAS  Google Scholar 

  41. Valaskova M, Martynkova GS (2012) Clay minerals in nature–their characterization, modification and application, application of electrochemistry for studying sorption properties of montmorillonite. Published by InTech Janeza Trdine 9, Rijeka

    Book  Google Scholar 

  42. Fitch A (1990) J Electroanal Chem 284:237–244

    Article  CAS  Google Scholar 

  43. Altun Y, Dogan-Topal B, Uslub B, Ozkan SA (2009) Electrochim Acta 54:1893–1903

    Article  CAS  Google Scholar 

  44. Oliveira-Brett AM, Piedade JAP, Chiorcea A-M (2002) J Electroanal Chem 538–539:267–276

    Article  Google Scholar 

  45. Yi H, Li C (2007) Russ J Electrochem 43:1377–1381

    Article  CAS  Google Scholar 

  46. Navratilova Z, Hranicka Z (2008) Sens Electroanalysis 3:55–64

    Google Scholar 

  47. Hegde RN, Shetti NP, Nandibewoor ST (2009) Talanta 79:361–368

    Article  CAS  Google Scholar 

  48. Masui M, Sayo H (1971) J Chem Soc B 1593–1596

  49. Chen D, Chen J, Luan X, Ji H, Xia Z (2011) Chem Eng J 171:1150–1158

    Article  CAS  Google Scholar 

  50. Bard A, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  51. Greef R, Peat R, Peter LM, Pletcher D, Robinson J (1990) Instrumental methods in electrochemistry. Ellis Horwood, New York

    Google Scholar 

  52. Laviron E, Roullier L, Degrand C (1980) J Electroanal Chem 112:11–23

    Article  CAS  Google Scholar 

  53. Maghear A, Cristea C, Marian A, Marian IO, Sandulescu R (2013) Farmacia 61:648–657

    CAS  Google Scholar 

  54. Elisa Lozano-Chaves M, Palacios-Santander JM, Cubillana-Aguilera LM, Naranjo-Rodrıguez I, Hidalgo-Hidalgo-de-Cisneros JL (2006) Sensor Actuator B 115:575–583

    Article  Google Scholar 

  55. Bagotsky VS (2006) Fundamentals of electrochemistry, 2nd edn. John Wiley and Sons, Hoboken

    Google Scholar 

  56. Gamburge YD, Zangari G (2011) Theory and practice of metal electrodeposition –the structure of metal solution interface. Springer Science + Business media, LLC, New York

    Book  Google Scholar 

  57. Manisankar P, Selvanathanb G, Vedhib C (2005) Appl Clay Sci 29:249–257

    Article  CAS  Google Scholar 

  58. Biçer E, Arat C (2009) Croat Chem Acta 82:583–593

    Google Scholar 

  59. Galus Z (1976) Fundamentals of electrochemical analysis. Engl. edn., Ellis Horwood Limited Publishers, New York

    Google Scholar 

  60. Brett CMA, Brett AMO (1993) Electrochemistry: principles, methods, and applications. Oxford University Press, Oxford

    Google Scholar 

  61. Ju H, Leech D (2000) J Electroanal Chem 484:150–156

    Article  CAS  Google Scholar 

  62. Mckay G (1982) J Chem Technol Biotechnol 32:759–772

    Article  CAS  Google Scholar 

  63. Jaycock MJ, Parfitt GD (1981) Chemistry of interfaces. Ellis Horwood, Chichester

    Google Scholar 

  64. Miller JN (1991) Analyst 116:3–14

    Article  CAS  Google Scholar 

  65. The United States Pharmacopeial Convention (2010) The United States Pharmacopeia. USP 33-NF 28, Rockville

    Google Scholar 

  66. Christian GD (1994) Analytical chemistry, 5th edn. Willey, Hoboken

    Google Scholar 

Download references

Acknowledgment

We are grateful to Professor Atsunori Matsuda from Toyohashi University of Technology, Toyohashi, Japan for his help in electrochemical impedance spectroscopy (EIS) measurements of bare CPE and that modified with Na-MMT clay in his great Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanaa S. El-Desoky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoneim, M.M., Abdel-Azzem, M.K., El-Desoky, H.S. et al. Electrochemical determination of pipazethate hydrochloride on Na-montmorillonite modified carbon paste electrode in formulation and human blood. J Solid State Electrochem 19, 2039–2051 (2015). https://doi.org/10.1007/s10008-014-2674-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2674-x

Keywords

Navigation