Skip to main content
Log in

Foliar nutrient resorption constrains soil nutrient transformations under two native oak species in a temperate deciduous forest in Mexico

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Foliar nutrient resorption (FNR) is a key process in the dynamics of nutrients in a forest ecosystem. Along with other factors, FNR regulates the chemical composition of the forest floor and, consequently, the rates of organic matter decomposition and soil nutrient availability. The main objective of the present study was to examine the effect of FNR of two deciduous oak species (Quercus castanea and Q. deserticola) in the litter and soil nutrient dynamics, in addition to analyze whether the interaction between two species was positive (synergistic) or negative (antagonistic) through the mixed litter from two species. For this purpose, the nutrient concentration of green leaves, litterfall, litter and soil was measured, as well as soil microbial activity. These measurements were taken in isolated stands with the presence of one of the oak species and stands with the two oak species mixed. Quercus deserticola, with lower FNR, produced litter with a higher N concentration, which apparently enhancing microbial activity in the forest floor litter and increased nutrient transformations and soil fertility. In contrast, Q. castanea has a higher FNR and produced litter with a lower nutrient concentration. The microbial soil community associated with Q. castanea must therefore invest more energy in metabolic processes at the expense of biomass growth. However, forest floor nutrient transformations were more intense and soil fertility increased in areas where both species intermix; in this case, the latter species received the rich-nutrient litterfall of Q. deserticola. These results suggest a strong footprint of species traits on microbial activities and soil nutrient transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608

    Article  Google Scholar 

  • Aksekili E, Kilic DD, Kutbay HG (2007) Foliar nutrient dynamics and foliar resorption in Quercus brantii lindley along an elevational gradient. Pak J Biol Sci 10:3778–3785

    Article  CAS  PubMed  Google Scholar 

  • Aldrich PR, Cavender-Bares J (2011) Quercus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, forest trees. Springer, Berlin, pp 89–129

    Chapter  Google Scholar 

  • Almendros G, Dorado J, González-Villa FJ, Blanco MJ, Lankes U (2000) 13C NMR assessment of decomposition patterns during composting of forest and shrub biomass. Soil Biol Biochem 32:793–804

    Article  CAS  Google Scholar 

  • Aponte C, Marañón T, García LV (2010) Microbial C, N and P in soils of Mediterranean oak forests: influence of season, canopy cover and soil depth. Biogeochemistry 101:77–92

    Article  CAS  Google Scholar 

  • Aponte C, García LV, Pérez-Ramos IM, Gutiérrez E, Marañón T (2011) Oak trees and soil interactions in Mediterranean forests: a positive feedback model. J Veg Sci 22:856–867

    Article  Google Scholar 

  • Aponte C, García LV, Marañón T (2013) Tree species effects on nutrient cycling and soil biota: a feedback mechanism favoring species coexistence. Forest Ecol Manag 309:36–46

    Article  Google Scholar 

  • Bengtsson G, Bengtson P, Mansson K (2003) Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biol Biochem 35:143–154

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C (2014) Plant litter: decomposition, humus formation, carbon sequestration, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Berrier DJ, Rawls MS, McCallister SL, Franklin RB (2014) Influence of substrate quality and moisture availability on microbial communities and litter decomposition. Open J Ecol 4:421–433

    Article  Google Scholar 

  • Blagodatskaya E, Khomyakov N, Myachina O, Bogomolova I, Blagodatsky S, Kuzyakov Y (2014) Microbial interactions affect sources of priming induced by cellulose. Soil Biol Biochem 74:39–49

    Article  CAS  Google Scholar 

  • Bonanomi G, Incerti G, Antignani V, Capodilupo M, Mazzoleni S (2010) Decomposition and nutrient dynamics in mixed litter of Mediterranean species. Plant Soil 331:481–496

    Article  CAS  Google Scholar 

  • Bonanomi G, Incerti G, Giannino F, Mingo A, Lanzotti V, Mazzoleni S (2013) Litter quality assessed by solid state13C NMR spectroscopy predicts decay rate better than C/N and Lignin/N ratios. Soil Biol Biochem 56:40–48

    Article  CAS  Google Scholar 

  • Bremmer JM (1996) Nitrogen-total. In: Spark DL, Page AL, Summer ME, Tabatabai MA, Helmke PA (eds) Methods of soil analyses part 3: chemical analyses. Soil Science Society of America, Madison, pp 1085–1121

    Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1984) Phosphorus in the soil microbial biomass. Soil Biol Biochem 16:169–175

    Article  CAS  Google Scholar 

  • Campanella MV, Bertiller MB (2011) Is N-resorption efficiency related to secondary compounds and leaf longevity in coexisting plant species of the arid Patagonian Monte, Argentina? Austral Ecol 36:395–402

    Article  Google Scholar 

  • Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz EA (2004) Phylogenetic over dispersion in Floridian oak communities. Am Nat 163:823–843

    Article  CAS  PubMed  Google Scholar 

  • Chapman SK, Newman GS (2010) Biodiversity at the plant-soil interface: microbial abundance and community structure respond to litter mixing. Oecologia 162:763–769

    Article  PubMed  Google Scholar 

  • Chapman SK, Newman GS, Hart SC, Schweitzer JA, Koch GW (2013) Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition. PLoS ONE 8:e62671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chávez-Vergara B (2010) Efecto de dos especies del genero Quercus sobre la dinámica de C, N y P en un fragmento forestal de la cuenca de Cuitzeo, Michoacán. (MSc Thesis) UNAM, Morelia, México

  • Chávez-Vergara B, García-Oliva F (2013) Consecuencias funcionales de la diferenciación taxonómica entre secciones del género Quercus: el caso de la reabsorción de nutrientes. Revista Biológicas Número Especial, pp 1–7

  • Chávez-Vergara B, Merino A, Vázquez-Marrufo G, García-Oliva F (2014) Organic matter dynamics and microbial activity during decomposition of forest floor under two native Neotropical oak species in a temperate deciduous forest in Mexico. Geoderma 235–236:133–145

    Article  Google Scholar 

  • Cleveland CC, Neff JC, Townsend AR, Hood E (2004) Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems 7:275–285

    Article  CAS  Google Scholar 

  • Cleveland CC, Reed SC, Keller AB, Nemergut DR, O’Neill SP, Ostertag R, Vitousek PM (2014) Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. Oecologia 174:283–294

    Article  PubMed  Google Scholar 

  • Couteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66

    Article  CAS  PubMed  Google Scholar 

  • Covelo F, Gallardo A (2002) Effect of pine harvesting on leaf nutrient dynamics in young oak trees at NW Spain. For Ecol Manag 167:161–172

    Article  Google Scholar 

  • Covelo F, Rodríguez A, Gallardo A (2008) Spatial pattern and scale of leaf N and P resorption efficiency and proficiency in a Quercus robur population. Plant Soil 311:109–119

    Article  CAS  Google Scholar 

  • de Campos MC, Pearse SJ, Oliveira RS, Lambers H (2013) Down regulation of net phosphorus-uptake capacity is inversely related to leaf phosphorus-resorption proficiency in four species from a phosphorus-impoverished environment. Ann Bot 111:445–454

    Article  PubMed Central  PubMed  Google Scholar 

  • del Arco JM, Escudero A, Vega-Garrido M (1991) Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology 72:701–708

    Article  Google Scholar 

  • Don A, Kalbitz K (2005) Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biol Biochem 37:2171–2179

    Article  CAS  Google Scholar 

  • Drenovsky RE, Koehler CE, Skelly K, Richards JH (2013) Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees. Oecologia 171:39–50

    Article  PubMed  Google Scholar 

  • Duboc O, Zehetner F, Djukic I, Tatzber M, Berger TW, Gerzabek MH (2012) Decomposition of European beech and Black pine foliar litter along an Alpine elevation gradient: mass loss and molecular characteristics. Geoderma 189–190:522–531

    Article  Google Scholar 

  • Eaton WD (2001) Microbial and nutrient activity in soils from different subtropical forest habitat in Belize, Central America before and during the transition from dry to wet season. App Soil Ecol 16:219–227

    Article  Google Scholar 

  • Escudero A, Mediavilla S (2003) Decline in photosynthetic nitrogen use efficiency with leaf age and nitrogen resorption as determinants of leaf life span. J Ecol 91:880–889

    Article  Google Scholar 

  • Fanin N, Hättenschwiler S, Fromin N (2014) Litter fingerprint on microbial biomass, activity, and community structure in the underlying soil. Plant Soil 379:79–91

    Article  CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward and ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JHC (2012) Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J Ecol 100:619–630

    Article  Google Scholar 

  • García-Oliva F, Sveshtarova B, Oliva M (2003) Seasonal effects on soil carbon dynamics in a tropical deciduous forest ecosystem in Western Mexico. J Trop Ecol 19:179–188

    Article  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Genung MA, Bailey JK, Schweitzer JA (2013) The afterlife of interspecific indirect genetic effects: genotype interactions alter litter quality with consequences for decomposition and nutrient dynamics. PLoS ONE 8:e53718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hagen-Thorn A, Varnagiryte I, Nihlgård B, Armolaitis K (2006) Autumn nutrient resorption and losses in four deciduous forest tree species. For Ecol Manag 228:33–39

    Article  Google Scholar 

  • Hayes P, Turner BL, Lambers H, Laliberté E, Bellingham P (2014) Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J Ecol 102:396–410

    Article  CAS  Google Scholar 

  • Huffman EWD (1977) Performance of a new carbon dioxide coulometer Microchem. J. 22:567–573

    CAS  Google Scholar 

  • Jiang C, Yu G, Li Y, Cao G, Yang Z, Sheng W, Yu W (2012) Nutrient resorption of coexistence species in alpine meadow of the Qinghai-Tibetan Plateau explains plant adaptation to nutrient-poor environment. Ecol Eng 44:1–9

    Article  Google Scholar 

  • Joergensen RG, Mueller T (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the KEN value. Soil Biol Biochem 28:33–37

    Article  CAS  Google Scholar 

  • Jones DL, Willett VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–999

    Article  CAS  Google Scholar 

  • Jones DL, Willett VB, Stockdale EA, Macdonald AJ, Murphy DV (2012) Molecular weight of dissolved organic carbon, nitrogen, and phenolics in Grassland Soils. Soil Sci Soc Am J 76:142–150

    Article  CAS  Google Scholar 

  • Kaye JP, Resh SC, Kaye MW, Chimner RA (2000) Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia trees. Ecology 81:3267–3275

    Article  Google Scholar 

  • Kiikkilä O, Kanerva S, Kitunen V, Smolander A (2013) Soil microbial activity in relation to dissolved organic matter properties under different tree species. Plant Soil 377:169–177

    Article  Google Scholar 

  • Kilic D, Kutbay HG, Ozbucak T, Huseyinova R (2010) Foliar resorption in Quercus petraea subsp. iberica and Arbutus andrachne along an elevational gradient. Ann For Sci 67:213

    Article  Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727

    Article  Google Scholar 

  • Killingbeck KT (2004) Nutrient resorption. In: Noodén LD (ed) Plant cell death processes. Academic Press, New York, pp 215–226

    Chapter  Google Scholar 

  • Killingbeck KT, Costigan SA (1988) Element resorption in a guild of understory shrub species: niche differentiation and resorption thresholds. Oikos 53:366–374

    Article  CAS  Google Scholar 

  • Knops JMH, Koenig WD (1997) Site fertility and leaf nutrients of sympatric evergreen and deciduous species of Quercus in central coastal California. Plant Ecol 130:121–131

    Article  Google Scholar 

  • Kominoski JS, Hoellein TJ, Kelly JJ, Pringle CM (2009) Does mixing litter of different qualities alter stream microbial diversity and functioning on individual litter species? Oikos 118:457–463

    Article  Google Scholar 

  • Körner C (1989) The nutritional status of plants from high altitudes. A worldwide comparison. Oecologia 81:379–391

    Article  Google Scholar 

  • Kozovits AR, Bustamante MMC, Garofalo CR, Bucci S, Franco AC, Goldstein G, Meinzer FC (2007) Nutrient resorption and patterns of litter production and decomposition in a Neotropical savanna. Func Ecol 21:1034–1043

    Article  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Lajtha K, Klein M (1988) The effect of varying nitrogen and phosphorus availability on nutrient use by Larrea tridentata, a desert evergreen shrub. Oecologia 75:348–353

    Article  Google Scholar 

  • Lecerf A, Marie G, Kominoski JS, LeRoy CJ, Bernardet C, Swan CM (2011) Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition. Ecology 92:160–169

    Article  PubMed  Google Scholar 

  • Levy-Booth DJ, Prescott CE, Grayston SJ (2014) Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol Biochem 75:11–25

    Article  CAS  Google Scholar 

  • Li LJ, Zeng D-H, Mao R, Yu ZY (2012) Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China. Plant Soil Environ 58:446–451

    CAS  Google Scholar 

  • Luizao RCC, Bone TA, Rosswall T (1992) Seasonal variation of soil microbial mass. The effect of clear felling a tropical rainforest and establishment of pasture in the Central Amazon. Soil Biol Biochem 24:805–813

    Article  Google Scholar 

  • Mae T (2004) Leaf senescence and nitrogen metabolism. In: Noodén LD (ed) Plant cell death processes. Academic Press, New York, pp 157–168

    Chapter  Google Scholar 

  • McArthur JV, Aho JM, Rader RB, Mills GL (1994) Interspecific leaf interactions during decomposition in aquatic and flood plain ecosystems. J N Am Benthol Soc 13:57–67

    Article  Google Scholar 

  • Medina E, Cuevas E (1994) IV. Mineral nutrition: humid tropical forests. Prog Bot 55:115–129

    Article  Google Scholar 

  • Montaño NM, García-Oliva F, Jaramillo VJ (2007) Dissolved organic carbon affects soil microbial activity and nitrogen dynamics in a Mexican tropical deciduous forest. Plant Soil 295:265–277

    Article  Google Scholar 

  • Montaño NM, Sandoval-Pérez AL, García-Oliva F, Larsen J, Gavito ME (2009) Microbial activity in contrasting conditions of soil C and N availability in a tropical dry forest. J Trop Ecol 25:401–413

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nilsson M-C, Gallet C, Wallstedt A (1998) Temporal variability of phenolics and batatasin-III in Empetrum hermaphroditum leaves over an eight-year period: interpretation of ecological function. Oikos 81:6–16

    Article  CAS  Google Scholar 

  • Ono K, Hiradate S, Morita S, Hirai K (2011) Fate of organic carbon during decomposition of different litter types in Japan. Biogeochemistry 112:7–21

    Article  Google Scholar 

  • Orwin K, Wardle D, Greenfield L (2006) Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology 87:580–593

    Article  PubMed  Google Scholar 

  • Osono T, Hirose D, Fujimaki R (2006) Fungal colonization as affected by litter depth and decomposition stage of needle litter. Soil Biol Biochem 38:2743–2752

    Article  CAS  Google Scholar 

  • Perveen N, Barot S, Alvarez G, Klumpp K, Martin R, Rapaport A, Herfurth D, Louault F, Fontaine S (2014) Priming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY model. Glob Chang Biol 20:1174–1190

    Article  PubMed  Google Scholar 

  • Pietsch KA, Ogle K, Cornelissen JHC, Cornwell WK, Bönisch G, Craine JM, Jackson BG, Kattge J, Peltzer DA, Penuelas J, Reich PB, Wardle DA, Weedon JT, Wright IJ, Zanne AE, Wirth C (2014) Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Glob Ecol Biogeogr 23:1046–1057

    Article  Google Scholar 

  • Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 164:143–164

    Article  Google Scholar 

  • Renteria LY, Jaramillo VJ (2011) Rainfall drives leaf traits and leaf nutrient resorption in a tropical dry forest in Mexico. Oecologia 165:201–211

    Article  PubMed  Google Scholar 

  • Robertson PG, Coleman DC, Bledsoe CS, Sollins P (1999) Standard soil methods for long-term ecological research (LTER). University Press, Oxford, pp 258–271

    Google Scholar 

  • Rodríguez-Trejo DA, Myers RL (2010) Using oak characteristics to guide fire regime restoration in Mexican pine-oak and oak forests. Ecol Res 28:304–323

    Article  Google Scholar 

  • Salamanca EF, Kaneko N, Katagiri S (1998) Effects of leaf litter mixtures on the decomposition of Quercus serrata and Pinus densiflora using field and laboratory microcosm methods. Ecol Eng 10:53–73

    Article  Google Scholar 

  • SAS Institute Inc (2010) JMP software Version 11 www.jmp.com

  • Shaver GR, Melillo JM (1984) Nutrient budgets of marsh plants: efficiency concept and relation to availability. Ecology 65:1491–1510

    Article  Google Scholar 

  • Smith VC, Bradford MA (2003) Do non-additive effects on decomposition in litter-mix experiments result from differences in resource quality between litters? Oikos 102:235–242

    Article  Google Scholar 

  • Smolander A, Kitunen V (2002) Soil microbial activities and characteristics of dissolved organic C in relation to tree species. Soil Biol Biochem 34:651–660

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. Freeman and Company, San Francisco, p 832

    Google Scholar 

  • Sparling GP, Feltham CW, Reynolds J, West AW (1990) Estimation of soil microbial C by a fumigation–extraction method: use on soils of high organic matter content, and a reassessment of the KEC-factor. Soil Biol Biochem 22:301–307

    Article  Google Scholar 

  • StatSoft Inc (2007) STATISTICA (data analysis software system) version 8.0. www.statsoft.com

  • Talbot JM, Yelle DJ, Nowick J, Treseder KK (2011) Litter decay rates are determined by lignin chemistry. Biogeochemistry 108:279–295

    Article  Google Scholar 

  • Tang L, Han W, Chen Y, Fang J (2013) Resorption proficiency and efficiency of leaf nutrients in woody plants in eastern China. J Plant Ecol 6:408–417

    Article  Google Scholar 

  • Technicon (1977) Technicon industrial system. Method No. 329–74 W/B Individual/simultaneous determinations of nitrogen and/or phosphorus in BD acid digest. Technicon Industrial Systems, New York

  • Thirukkumaran CM, Parkinson D (2000) Microbial respiration, metabolic quotient and litter decomposition in a lodge pole pine forest floor amended with nitrogen and phosphorous fertilizers. Soil Biol Biochem 32:59–66

    Article  CAS  Google Scholar 

  • Tiessen H, Moir JO (1993) Characterization of available P by sequential extraction. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, pp 75–85

    Google Scholar 

  • Ueda MU, Mizumachi E, Tokuchi N (2011) Foliage nitrogen turnover: differences among nitrogen absorbed at different times by Quercus serrata saplings. Ann Bot 108:169–175

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Meeteren MJM, Tietema A, Westerveld JW (2007) Regulation of microbial carbon, nitrogen, and phosphorus transformations by temperature and moisture during decomposition of Calluna vulgaris litter. Biol Fert Soils 44:103–112

    Article  Google Scholar 

  • Vance ED, Brookes AC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Vitousek PM, Turner DR, Kitayama K (1995) Foliar nutrients during long-term soil development in Hawaiian montanera in forest. Ecology 76:712–720

    Article  Google Scholar 

  • Von Ende CN (1993) Repeated measures analysis: growth and other time-dependent measures. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman and Hall, New York, pp 113–137

    Google Scholar 

  • Wardle D, Yeates G, Barker G, Bonner K (2006) The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol Biochem 38:1052–1062

    Article  CAS  Google Scholar 

  • Wu T, Dong Y, Yu M, Geoff Wang G, Zeng D-H (2012) Leaf nitrogen and phosphorus stoichiometry of Quercus species across China. For Ecol Manag 284:116–123

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Ramiro Ríos for assisting with the collection of samples, and Rodrigo Velázquez-Durán and Ofelia Beltrán Paz for assisting with chemical analysis. We thank two anonymous reviewers for comments on a draft of the manuscript. This study was partially supported by PAPIIT-DGAPA, UNAM (project no. IV201015). B. Chávez-Vergara acknowledges a scholarship provided by the National Council of Science and Technology (CONACyT, scholarship number 215406) and support from the Graduate Program in Biological Sciences of the National Autonomous University of Mexico (UNAM).

Ethical Standard

The present article has been approved by all co-authors, and it has not been previously published nor is in consideration for publication elsewhere. The authors declare that they have no conflict of interest; additionally, this research is not involving human participants and/or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe García-Oliva.

Additional information

Communicated by Hans Pretzsch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chávez-Vergara, B.M., González-Rodríguez, A., Etchevers, J.D. et al. Foliar nutrient resorption constrains soil nutrient transformations under two native oak species in a temperate deciduous forest in Mexico. Eur J Forest Res 134, 803–817 (2015). https://doi.org/10.1007/s10342-015-0891-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-015-0891-1

Keywords

Navigation